Recurrent Neurofuzzy Network in Thermal Modeling of Power Transformers

This work suggests recurrent neurofuzzy networks as a means to model the thermal condition of power transformers. Experimental results with actual data reported in the literature show that neurofuzzy modeling requires less computational effort, and is more robust and efficient than multilayer feedfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2007-04, Vol.22 (2), p.904-910
Hauptverfasser: Hell, M., Costa, P., Gomide, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 910
container_issue 2
container_start_page 904
container_title IEEE transactions on power delivery
container_volume 22
creator Hell, M.
Costa, P.
Gomide, F.
description This work suggests recurrent neurofuzzy networks as a means to model the thermal condition of power transformers. Experimental results with actual data reported in the literature show that neurofuzzy modeling requires less computational effort, and is more robust and efficient than multilayer feedforward networks, a radial basis function network, and classic deterministic modeling approaches
doi_str_mv 10.1109/TPWRD.2006.874613
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671332979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4141123</ieee_id><sourcerecordid>34452636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-3aa2d5e6c46385b4813495bb82689b57c9a5b46be7aafc1e75c37a17e532fe0c3</originalsourceid><addsrcrecordid>eNp9kUtLAzEQx4MoWKsfQLwsgo_L1mTzPopaFXwhFY8hm87q6najSZdiP72pFQUPnmaY-c3zj9A2wQNCsD4a3T3enw4KjMVASSYIXUE9oqnMWYHVKuphpXiutJTraCPGF4wxwxr30PAeXBcCtNPsBrrgq24-_0judObDa1a32egZwsQ22bUfQ1O3T5mvsjs_g5CNgm1j5cMEQtxEa5VtImx92z56GJ6NTi7yq9vzy5Pjq9wxoqY5tbYYcxCOCap4yRShTPOyVIVQuuTSaZuiogRpbeUISO6otEQCp0UF2NE-Olj2fQv-vYM4NZM6Omga24LvotGYCio1Zonc_5ekjPFCJLqPDv8FiZCE0kJLndDdP-iL70KbDjZKMMlIOiZBZAm54GMMUJm3UE9s-DAEm4VW5ksrs9DKLLVKNXvfjW10tqnSZ10dfwuV4OlfiwV2llwNAD_pNJeQgtJPaveb_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864741495</pqid></control><display><type>article</type><title>Recurrent Neurofuzzy Network in Thermal Modeling of Power Transformers</title><source>IEEE Electronic Library (IEL)</source><creator>Hell, M. ; Costa, P. ; Gomide, F.</creator><creatorcontrib>Hell, M. ; Costa, P. ; Gomide, F.</creatorcontrib><description>This work suggests recurrent neurofuzzy networks as a means to model the thermal condition of power transformers. Experimental results with actual data reported in the literature show that neurofuzzy modeling requires less computational effort, and is more robust and efficient than multilayer feedforward networks, a radial basis function network, and classic deterministic modeling approaches</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2006.874613</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aging ; Applied sciences ; Artificial neural networks ; Computation ; Computational modeling ; Computer networks ; Condition monitoring ; Electrical engineering. Electrical power engineering ; Exact sciences and technology ; Feedforward ; Multilayers ; Networks ; Nonlinear dynamical systems ; Power electronics, power supplies ; Power system modeling ; Power transformers ; Radial basis function ; recurrent neurofuzzy networks (RNFNs) ; Robustness ; Temperature ; thermal modeling ; Transformers ; Transformers and inductors</subject><ispartof>IEEE transactions on power delivery, 2007-04, Vol.22 (2), p.904-910</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-3aa2d5e6c46385b4813495bb82689b57c9a5b46be7aafc1e75c37a17e532fe0c3</citedby><cites>FETCH-LOGICAL-c418t-3aa2d5e6c46385b4813495bb82689b57c9a5b46be7aafc1e75c37a17e532fe0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4141123$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4141123$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18653859$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hell, M.</creatorcontrib><creatorcontrib>Costa, P.</creatorcontrib><creatorcontrib>Gomide, F.</creatorcontrib><title>Recurrent Neurofuzzy Network in Thermal Modeling of Power Transformers</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>This work suggests recurrent neurofuzzy networks as a means to model the thermal condition of power transformers. Experimental results with actual data reported in the literature show that neurofuzzy modeling requires less computational effort, and is more robust and efficient than multilayer feedforward networks, a radial basis function network, and classic deterministic modeling approaches</description><subject>Aging</subject><subject>Applied sciences</subject><subject>Artificial neural networks</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer networks</subject><subject>Condition monitoring</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>Feedforward</subject><subject>Multilayers</subject><subject>Networks</subject><subject>Nonlinear dynamical systems</subject><subject>Power electronics, power supplies</subject><subject>Power system modeling</subject><subject>Power transformers</subject><subject>Radial basis function</subject><subject>recurrent neurofuzzy networks (RNFNs)</subject><subject>Robustness</subject><subject>Temperature</subject><subject>thermal modeling</subject><subject>Transformers</subject><subject>Transformers and inductors</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtLAzEQx4MoWKsfQLwsgo_L1mTzPopaFXwhFY8hm87q6najSZdiP72pFQUPnmaY-c3zj9A2wQNCsD4a3T3enw4KjMVASSYIXUE9oqnMWYHVKuphpXiutJTraCPGF4wxwxr30PAeXBcCtNPsBrrgq24-_0judObDa1a32egZwsQ22bUfQ1O3T5mvsjs_g5CNgm1j5cMEQtxEa5VtImx92z56GJ6NTi7yq9vzy5Pjq9wxoqY5tbYYcxCOCap4yRShTPOyVIVQuuTSaZuiogRpbeUISO6otEQCp0UF2NE-Olj2fQv-vYM4NZM6Omga24LvotGYCio1Zonc_5ekjPFCJLqPDv8FiZCE0kJLndDdP-iL70KbDjZKMMlIOiZBZAm54GMMUJm3UE9s-DAEm4VW5ksrs9DKLLVKNXvfjW10tqnSZ10dfwuV4OlfiwV2llwNAD_pNJeQgtJPaveb_w</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Hell, M.</creator><creator>Costa, P.</creator><creator>Gomide, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20070401</creationdate><title>Recurrent Neurofuzzy Network in Thermal Modeling of Power Transformers</title><author>Hell, M. ; Costa, P. ; Gomide, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-3aa2d5e6c46385b4813495bb82689b57c9a5b46be7aafc1e75c37a17e532fe0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aging</topic><topic>Applied sciences</topic><topic>Artificial neural networks</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer networks</topic><topic>Condition monitoring</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>Feedforward</topic><topic>Multilayers</topic><topic>Networks</topic><topic>Nonlinear dynamical systems</topic><topic>Power electronics, power supplies</topic><topic>Power system modeling</topic><topic>Power transformers</topic><topic>Radial basis function</topic><topic>recurrent neurofuzzy networks (RNFNs)</topic><topic>Robustness</topic><topic>Temperature</topic><topic>thermal modeling</topic><topic>Transformers</topic><topic>Transformers and inductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hell, M.</creatorcontrib><creatorcontrib>Costa, P.</creatorcontrib><creatorcontrib>Gomide, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hell, M.</au><au>Costa, P.</au><au>Gomide, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrent Neurofuzzy Network in Thermal Modeling of Power Transformers</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2007-04-01</date><risdate>2007</risdate><volume>22</volume><issue>2</issue><spage>904</spage><epage>910</epage><pages>904-910</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>This work suggests recurrent neurofuzzy networks as a means to model the thermal condition of power transformers. Experimental results with actual data reported in the literature show that neurofuzzy modeling requires less computational effort, and is more robust and efficient than multilayer feedforward networks, a radial basis function network, and classic deterministic modeling approaches</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2006.874613</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2007-04, Vol.22 (2), p.904-910
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_miscellaneous_1671332979
source IEEE Electronic Library (IEL)
subjects Aging
Applied sciences
Artificial neural networks
Computation
Computational modeling
Computer networks
Condition monitoring
Electrical engineering. Electrical power engineering
Exact sciences and technology
Feedforward
Multilayers
Networks
Nonlinear dynamical systems
Power electronics, power supplies
Power system modeling
Power transformers
Radial basis function
recurrent neurofuzzy networks (RNFNs)
Robustness
Temperature
thermal modeling
Transformers
Transformers and inductors
title Recurrent Neurofuzzy Network in Thermal Modeling of Power Transformers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrent%20Neurofuzzy%20Network%20in%20Thermal%20Modeling%20of%20Power%20Transformers&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Hell,%20M.&rft.date=2007-04-01&rft.volume=22&rft.issue=2&rft.spage=904&rft.epage=910&rft.pages=904-910&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2006.874613&rft_dat=%3Cproquest_RIE%3E34452636%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864741495&rft_id=info:pmid/&rft_ieee_id=4141123&rfr_iscdi=true