Recurrent Neurofuzzy Network in Thermal Modeling of Power Transformers

This work suggests recurrent neurofuzzy networks as a means to model the thermal condition of power transformers. Experimental results with actual data reported in the literature show that neurofuzzy modeling requires less computational effort, and is more robust and efficient than multilayer feedfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2007-04, Vol.22 (2), p.904-910
Hauptverfasser: Hell, M., Costa, P., Gomide, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work suggests recurrent neurofuzzy networks as a means to model the thermal condition of power transformers. Experimental results with actual data reported in the literature show that neurofuzzy modeling requires less computational effort, and is more robust and efficient than multilayer feedforward networks, a radial basis function network, and classic deterministic modeling approaches
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2006.874613