Computer simulation of electric field variations due to movements of electric charges

Simulations were carried out for the orbit of electron-induced secondary electrons around a charged microfibril of a sciatic nerve tissue. In order to set the parameters for the simulation, the shape of the microfibril was determined from a transmission electron microscopy image, while the electric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electron microscopy 2012-08, Vol.61 (4), p.217-222
Hauptverfasser: Inoue, Masao, Suzuki, Satoshi, Akase, Zentaro, Shindo, Daisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Simulations were carried out for the orbit of electron-induced secondary electrons around a charged microfibril of a sciatic nerve tissue. In order to set the parameters for the simulation, the shape of the microfibril was determined from a transmission electron microscopy image, while the electric potential on the surface of the charged microfibril was evaluated from a reconstructed phase image obtained with electron holography. On the other hand, the passing point and the angle of secondary electrons at the microfibril surface were determined from a reconstructed amplitude image. Eventually, simulation of orbits of secondary electrons was carried out by changing the kinetic energy of the secondary electrons. Under the given conditions, the orbit of secondary electrons with a kinetic energy of 29.6 eV fits the observations. If there are thin layers of electrons, the secondary electrons do not reach the surface but they go over it due to the repulsive Coulomb force resulting in successive revolving motion around the charged microfibril. Furthermore, the electric field variation due to the movement of the electric charges resulting from the specimen drift is also discussed briefly comparing it with electron holography data.
ISSN:0022-0744
1477-9986
2050-5701
DOI:10.1093/jmicro/dfs046