Chitosan/heteropolyacid composite membranes for direct methanol fuel cell

As inorganic proton conductors, phosphomolybdic acid (PMA), phosphotungstic acid (PWA) and silicotungstic acid (SiWA) are extremely attractive for proton-conducting composite membranes. An interesting phenomenon has been found in our previous experiments that the mixing of chitosan (CS) solution and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2009-03, Vol.188 (1), p.24-29
Hauptverfasser: Cui, Zhiming, Xing, Wei, Liu, Changpeng, Liao, Jianhui, Zhang, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As inorganic proton conductors, phosphomolybdic acid (PMA), phosphotungstic acid (PWA) and silicotungstic acid (SiWA) are extremely attractive for proton-conducting composite membranes. An interesting phenomenon has been found in our previous experiments that the mixing of chitosan (CS) solution and different heteropolyacids (HPAs) leads to strong electrostatic interaction to form insoluble complexes. These complexes in the form of membrane (CS/PMA, CS/PWA and CS/SiWA composite membranes) have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Therefore, HPAs can be immobilized within the membranes through electrostatic interaction, which overcomes the leakage problem from membranes. CS/PMA, CS/PWA and CS/SiWA composite membranes were characterized for morphology, intermolecular interactions, and thermal stability by SEM, FTIR, and TGA, respectively. Among the three membranes, CS/PMA membrane was identified as ideal for DMFC as it exhibited low methanol permeability (2.7 × 10 −7 cm 2 s −1) and comparatively high proton conductivity (0.015 S cm −1 at 25 °C).
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2008.11.108