Design and Manufacturing of a SMES Model Coil for Real Time Digital Simulator Based Power Quality Enhancement Simulation

The Superconducting Magnetic Energy Storage (SMES) system is a key technology for overcoming the voltage sag, swell, interruption, and frequency fluctuation with the fast response speed of current charge and discharge. A toroidal-type SMES is designed using a 3D CAD program, and the inductance and A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2010-06, Vol.20 (3), p.1339-1343
Hauptverfasser: KIM, A-Rong, KIM, Gyeong-Hun, KIM, Kwang-Min, KIM, Jin-Geun, KIM, Dae-Won, PARK, Minwon, YU, In-Keun, KIM, Seok-Ho, SIM, Kideok, SEONG, Ki-Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1343
container_issue 3
container_start_page 1339
container_title IEEE transactions on applied superconductivity
container_volume 20
creator KIM, A-Rong
KIM, Gyeong-Hun
KIM, Kwang-Min
KIM, Jin-Geun
KIM, Dae-Won
PARK, Minwon
YU, In-Keun
KIM, Seok-Ho
SIM, Kideok
SEONG, Ki-Chul
description The Superconducting Magnetic Energy Storage (SMES) system is a key technology for overcoming the voltage sag, swell, interruption, and frequency fluctuation with the fast response speed of current charge and discharge. A toroidal-type SMES is designed using a 3D CAD program, and the inductance and AC loss characteristic during operation are analysed using Finite Element Method (FEM) program. The toroidal-type magnet consists of 30 double pancake coils (DPC). The single pancake coils (SPC), constituting the double pancake coils, are arranged at an angle of 6° from each other, based on the central axis of the toroidal-type magnet. The conduction cooling method is used for the toroidal-type SMES cooling. To evaluate the characteristics of the over-mega-joule class grid-connected HTS SMES system, the authors implemented a simulation by which the SMES coil could be connected to the Real Time Digital Simulator (RTDS). Using the simulation, users can perform voltage sag and frequency stabilization simulations with a real SMES coil in real time and easily change the capacity of the SMES system as much as they need. The effectiveness of the toroidal-type HTS SMES system is demonstrated through the RTDS-based simulation and the results are briefly discussed.
doi_str_mv 10.1109/TASC.2009.2039788
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671323140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5422804</ieee_id><sourcerecordid>2716989901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-d29a1f8fafdc33d57bd403ceff9d5c4e32c0c10fc0921201eb678d9ed084492e3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EEiXwAxAXSwiJyxZ7bGe9x5KGD6kRHwnnlWuPg6tdu7V3Bf33OCT0wGU-NM-8Gs1LyEvOzjln3bvdxXZ1Dox1NYiu1foROeNK6QYUV49rzRRvNIB4Sp6VcsMYl1qqM_L7EkvYR2qioxsTZ2_sNOcQ9zR5auh2s97STXI40FUKA_Up0-9oBroLI9LLsA9TbbZhnAcz1dl7U9DRr-kXZvptNkOY7uk6_jTR4ohx-keGFJ-TJ94MBV-c8oL8-LDerT41V18-fl5dXDVWAkyNg85wr73xzgrhVHvtJBMWve-cshIFWGY585Z1wIFxvF622nXomJayAxQL8vaoe5vT3Yxl6sdQLA6DiZjm0vNlywUIXlUX5PV_6E2ac6zX9ZxBCwxkqyrFj5TNqZSMvr_NYTT5vkL9wYv-4EV_8KI_eVF33pyUTbFm8Lk-JJSHRQC9hPav9qsjFxDxYazqJzST4g87-pHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027202475</pqid></control><display><type>article</type><title>Design and Manufacturing of a SMES Model Coil for Real Time Digital Simulator Based Power Quality Enhancement Simulation</title><source>IEEE Electronic Library (IEL)</source><creator>KIM, A-Rong ; KIM, Gyeong-Hun ; KIM, Kwang-Min ; KIM, Jin-Geun ; KIM, Dae-Won ; PARK, Minwon ; YU, In-Keun ; KIM, Seok-Ho ; SIM, Kideok ; SEONG, Ki-Chul</creator><creatorcontrib>KIM, A-Rong ; KIM, Gyeong-Hun ; KIM, Kwang-Min ; KIM, Jin-Geun ; KIM, Dae-Won ; PARK, Minwon ; YU, In-Keun ; KIM, Seok-Ho ; SIM, Kideok ; SEONG, Ki-Chul</creatorcontrib><description>The Superconducting Magnetic Energy Storage (SMES) system is a key technology for overcoming the voltage sag, swell, interruption, and frequency fluctuation with the fast response speed of current charge and discharge. A toroidal-type SMES is designed using a 3D CAD program, and the inductance and AC loss characteristic during operation are analysed using Finite Element Method (FEM) program. The toroidal-type magnet consists of 30 double pancake coils (DPC). The single pancake coils (SPC), constituting the double pancake coils, are arranged at an angle of 6° from each other, based on the central axis of the toroidal-type magnet. The conduction cooling method is used for the toroidal-type SMES cooling. To evaluate the characteristics of the over-mega-joule class grid-connected HTS SMES system, the authors implemented a simulation by which the SMES coil could be connected to the Real Time Digital Simulator (RTDS). Using the simulation, users can perform voltage sag and frequency stabilization simulations with a real SMES coil in real time and easily change the capacity of the SMES system as much as they need. The effectiveness of the toroidal-type HTS SMES system is demonstrated through the RTDS-based simulation and the results are briefly discussed.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2009.2039788</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coiling ; Coils ; Computer simulation ; Cooling ; Digital signal processor ; Direct energy conversion and energy accumulation ; Electric potential ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electromagnets ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Energy accumulation ; Exact sciences and technology ; Finite element analysis ; Finite element method ; Frequency ; High temperature superconductors ; Manufacturing ; Mathematical models ; Operation. Load control. Reliability ; Pancake coils ; Power networks and lines ; Power quality ; Real time ; real-time digital simulator (RTDS) ; Samarium ; Simulation ; Small &amp; medium sized enterprises-SME ; Studies ; Superconducting magnetic energy storage ; superconducting magnetic energy storage (SMES) ; Toroidal magnetic fields ; toroidal-type SMES ; Various equipment and components ; Virtual manufacturing ; Voltage ; Voltage fluctuations</subject><ispartof>IEEE transactions on applied superconductivity, 2010-06, Vol.20 (3), p.1339-1343</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-d29a1f8fafdc33d57bd403ceff9d5c4e32c0c10fc0921201eb678d9ed084492e3</citedby><cites>FETCH-LOGICAL-c422t-d29a1f8fafdc33d57bd403ceff9d5c4e32c0c10fc0921201eb678d9ed084492e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5422804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23910,23911,25119,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5422804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22862775$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KIM, A-Rong</creatorcontrib><creatorcontrib>KIM, Gyeong-Hun</creatorcontrib><creatorcontrib>KIM, Kwang-Min</creatorcontrib><creatorcontrib>KIM, Jin-Geun</creatorcontrib><creatorcontrib>KIM, Dae-Won</creatorcontrib><creatorcontrib>PARK, Minwon</creatorcontrib><creatorcontrib>YU, In-Keun</creatorcontrib><creatorcontrib>KIM, Seok-Ho</creatorcontrib><creatorcontrib>SIM, Kideok</creatorcontrib><creatorcontrib>SEONG, Ki-Chul</creatorcontrib><title>Design and Manufacturing of a SMES Model Coil for Real Time Digital Simulator Based Power Quality Enhancement Simulation</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The Superconducting Magnetic Energy Storage (SMES) system is a key technology for overcoming the voltage sag, swell, interruption, and frequency fluctuation with the fast response speed of current charge and discharge. A toroidal-type SMES is designed using a 3D CAD program, and the inductance and AC loss characteristic during operation are analysed using Finite Element Method (FEM) program. The toroidal-type magnet consists of 30 double pancake coils (DPC). The single pancake coils (SPC), constituting the double pancake coils, are arranged at an angle of 6° from each other, based on the central axis of the toroidal-type magnet. The conduction cooling method is used for the toroidal-type SMES cooling. To evaluate the characteristics of the over-mega-joule class grid-connected HTS SMES system, the authors implemented a simulation by which the SMES coil could be connected to the Real Time Digital Simulator (RTDS). Using the simulation, users can perform voltage sag and frequency stabilization simulations with a real SMES coil in real time and easily change the capacity of the SMES system as much as they need. The effectiveness of the toroidal-type HTS SMES system is demonstrated through the RTDS-based simulation and the results are briefly discussed.</description><subject>Applied sciences</subject><subject>Coiling</subject><subject>Coils</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Digital signal processor</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric potential</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electromagnets</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Energy accumulation</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Frequency</subject><subject>High temperature superconductors</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Operation. Load control. Reliability</subject><subject>Pancake coils</subject><subject>Power networks and lines</subject><subject>Power quality</subject><subject>Real time</subject><subject>real-time digital simulator (RTDS)</subject><subject>Samarium</subject><subject>Simulation</subject><subject>Small &amp; medium sized enterprises-SME</subject><subject>Studies</subject><subject>Superconducting magnetic energy storage</subject><subject>superconducting magnetic energy storage (SMES)</subject><subject>Toroidal magnetic fields</subject><subject>toroidal-type SMES</subject><subject>Various equipment and components</subject><subject>Virtual manufacturing</subject><subject>Voltage</subject><subject>Voltage fluctuations</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1vEzEQhi0EEiXwAxAXSwiJyxZ7bGe9x5KGD6kRHwnnlWuPg6tdu7V3Bf33OCT0wGU-NM-8Gs1LyEvOzjln3bvdxXZ1Dox1NYiu1foROeNK6QYUV49rzRRvNIB4Sp6VcsMYl1qqM_L7EkvYR2qioxsTZ2_sNOcQ9zR5auh2s97STXI40FUKA_Up0-9oBroLI9LLsA9TbbZhnAcz1dl7U9DRr-kXZvptNkOY7uk6_jTR4ohx-keGFJ-TJ94MBV-c8oL8-LDerT41V18-fl5dXDVWAkyNg85wr73xzgrhVHvtJBMWve-cshIFWGY585Z1wIFxvF622nXomJayAxQL8vaoe5vT3Yxl6sdQLA6DiZjm0vNlywUIXlUX5PV_6E2ac6zX9ZxBCwxkqyrFj5TNqZSMvr_NYTT5vkL9wYv-4EV_8KI_eVF33pyUTbFm8Lk-JJSHRQC9hPav9qsjFxDxYazqJzST4g87-pHk</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>KIM, A-Rong</creator><creator>KIM, Gyeong-Hun</creator><creator>KIM, Kwang-Min</creator><creator>KIM, Jin-Geun</creator><creator>KIM, Dae-Won</creator><creator>PARK, Minwon</creator><creator>YU, In-Keun</creator><creator>KIM, Seok-Ho</creator><creator>SIM, Kideok</creator><creator>SEONG, Ki-Chul</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100601</creationdate><title>Design and Manufacturing of a SMES Model Coil for Real Time Digital Simulator Based Power Quality Enhancement Simulation</title><author>KIM, A-Rong ; KIM, Gyeong-Hun ; KIM, Kwang-Min ; KIM, Jin-Geun ; KIM, Dae-Won ; PARK, Minwon ; YU, In-Keun ; KIM, Seok-Ho ; SIM, Kideok ; SEONG, Ki-Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-d29a1f8fafdc33d57bd403ceff9d5c4e32c0c10fc0921201eb678d9ed084492e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Coiling</topic><topic>Coils</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Digital signal processor</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric potential</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electromagnets</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Energy accumulation</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Frequency</topic><topic>High temperature superconductors</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Operation. Load control. Reliability</topic><topic>Pancake coils</topic><topic>Power networks and lines</topic><topic>Power quality</topic><topic>Real time</topic><topic>real-time digital simulator (RTDS)</topic><topic>Samarium</topic><topic>Simulation</topic><topic>Small &amp; medium sized enterprises-SME</topic><topic>Studies</topic><topic>Superconducting magnetic energy storage</topic><topic>superconducting magnetic energy storage (SMES)</topic><topic>Toroidal magnetic fields</topic><topic>toroidal-type SMES</topic><topic>Various equipment and components</topic><topic>Virtual manufacturing</topic><topic>Voltage</topic><topic>Voltage fluctuations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIM, A-Rong</creatorcontrib><creatorcontrib>KIM, Gyeong-Hun</creatorcontrib><creatorcontrib>KIM, Kwang-Min</creatorcontrib><creatorcontrib>KIM, Jin-Geun</creatorcontrib><creatorcontrib>KIM, Dae-Won</creatorcontrib><creatorcontrib>PARK, Minwon</creatorcontrib><creatorcontrib>YU, In-Keun</creatorcontrib><creatorcontrib>KIM, Seok-Ho</creatorcontrib><creatorcontrib>SIM, Kideok</creatorcontrib><creatorcontrib>SEONG, Ki-Chul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KIM, A-Rong</au><au>KIM, Gyeong-Hun</au><au>KIM, Kwang-Min</au><au>KIM, Jin-Geun</au><au>KIM, Dae-Won</au><au>PARK, Minwon</au><au>YU, In-Keun</au><au>KIM, Seok-Ho</au><au>SIM, Kideok</au><au>SEONG, Ki-Chul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Manufacturing of a SMES Model Coil for Real Time Digital Simulator Based Power Quality Enhancement Simulation</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>20</volume><issue>3</issue><spage>1339</spage><epage>1343</epage><pages>1339-1343</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The Superconducting Magnetic Energy Storage (SMES) system is a key technology for overcoming the voltage sag, swell, interruption, and frequency fluctuation with the fast response speed of current charge and discharge. A toroidal-type SMES is designed using a 3D CAD program, and the inductance and AC loss characteristic during operation are analysed using Finite Element Method (FEM) program. The toroidal-type magnet consists of 30 double pancake coils (DPC). The single pancake coils (SPC), constituting the double pancake coils, are arranged at an angle of 6° from each other, based on the central axis of the toroidal-type magnet. The conduction cooling method is used for the toroidal-type SMES cooling. To evaluate the characteristics of the over-mega-joule class grid-connected HTS SMES system, the authors implemented a simulation by which the SMES coil could be connected to the Real Time Digital Simulator (RTDS). Using the simulation, users can perform voltage sag and frequency stabilization simulations with a real SMES coil in real time and easily change the capacity of the SMES system as much as they need. The effectiveness of the toroidal-type HTS SMES system is demonstrated through the RTDS-based simulation and the results are briefly discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2009.2039788</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2010-06, Vol.20 (3), p.1339-1343
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_1671323140
source IEEE Electronic Library (IEL)
subjects Applied sciences
Coiling
Coils
Computer simulation
Cooling
Digital signal processor
Direct energy conversion and energy accumulation
Electric potential
Electrical engineering. Electrical power engineering
Electrical power engineering
Electromagnets
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Energy accumulation
Exact sciences and technology
Finite element analysis
Finite element method
Frequency
High temperature superconductors
Manufacturing
Mathematical models
Operation. Load control. Reliability
Pancake coils
Power networks and lines
Power quality
Real time
real-time digital simulator (RTDS)
Samarium
Simulation
Small & medium sized enterprises-SME
Studies
Superconducting magnetic energy storage
superconducting magnetic energy storage (SMES)
Toroidal magnetic fields
toroidal-type SMES
Various equipment and components
Virtual manufacturing
Voltage
Voltage fluctuations
title Design and Manufacturing of a SMES Model Coil for Real Time Digital Simulator Based Power Quality Enhancement Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Manufacturing%20of%20a%20SMES%20Model%20Coil%20for%20Real%20Time%20Digital%20Simulator%20Based%20Power%20Quality%20Enhancement%20Simulation&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=KIM,%20A-Rong&rft.date=2010-06-01&rft.volume=20&rft.issue=3&rft.spage=1339&rft.epage=1343&rft.pages=1339-1343&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2009.2039788&rft_dat=%3Cproquest_RIE%3E2716989901%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027202475&rft_id=info:pmid/&rft_ieee_id=5422804&rfr_iscdi=true