Design and Manufacturing of a SMES Model Coil for Real Time Digital Simulator Based Power Quality Enhancement Simulation
The Superconducting Magnetic Energy Storage (SMES) system is a key technology for overcoming the voltage sag, swell, interruption, and frequency fluctuation with the fast response speed of current charge and discharge. A toroidal-type SMES is designed using a 3D CAD program, and the inductance and A...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2010-06, Vol.20 (3), p.1339-1343 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Superconducting Magnetic Energy Storage (SMES) system is a key technology for overcoming the voltage sag, swell, interruption, and frequency fluctuation with the fast response speed of current charge and discharge. A toroidal-type SMES is designed using a 3D CAD program, and the inductance and AC loss characteristic during operation are analysed using Finite Element Method (FEM) program. The toroidal-type magnet consists of 30 double pancake coils (DPC). The single pancake coils (SPC), constituting the double pancake coils, are arranged at an angle of 6° from each other, based on the central axis of the toroidal-type magnet. The conduction cooling method is used for the toroidal-type SMES cooling. To evaluate the characteristics of the over-mega-joule class grid-connected HTS SMES system, the authors implemented a simulation by which the SMES coil could be connected to the Real Time Digital Simulator (RTDS). Using the simulation, users can perform voltage sag and frequency stabilization simulations with a real SMES coil in real time and easily change the capacity of the SMES system as much as they need. The effectiveness of the toroidal-type HTS SMES system is demonstrated through the RTDS-based simulation and the results are briefly discussed. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2009.2039788 |