Loomis–Sikorski theorem and Stone duality for effect algebras with internal state

Recently Flaminio and Montagna extended the language of MV-algebras by adding a unary operation, called a state-operator. This notion is introduced here also for effect algebras. Having it, we generalize the Loomis–Sikorski Theorem for monotone σ -complete effect algebras with internal state. In add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuzzy sets and systems 2011-06, Vol.172 (1), p.71-86
Hauptverfasser: Buhagiar, David, Chetcuti, Emmanuel, Dvurečenskij, Anatolij
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently Flaminio and Montagna extended the language of MV-algebras by adding a unary operation, called a state-operator. This notion is introduced here also for effect algebras. Having it, we generalize the Loomis–Sikorski Theorem for monotone σ -complete effect algebras with internal state. In addition, we show that the category of divisible state-morphism effect algebras satisfying (RDP) and countable interpolation with an order determining system of states is dual to the category of Bauer simplices Ω such that ∂ e Ω is an F-space.
ISSN:0165-0114
1872-6801
DOI:10.1016/j.fss.2011.01.004