A New Variable Step-Size NLMS Algorithm and Its Performance Analysis
Numerous variable step-size normalized least mean-square (VSS-NLMS) algorithms have been derived to solve the dilemma of fast convergence rate or low excess mean-square error in the past two decades. This paper proposes a new, easy to implement, nonparametric VSS-NLMS algorithm that employs the mean...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2012-04, Vol.60 (4), p.2055-2060 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerous variable step-size normalized least mean-square (VSS-NLMS) algorithms have been derived to solve the dilemma of fast convergence rate or low excess mean-square error in the past two decades. This paper proposes a new, easy to implement, nonparametric VSS-NLMS algorithm that employs the mean-square error and the estimated system noise power to control the step-size update. Theoretical analysis of its steady-state behavior shows that, when the input is zero-mean Gaussian distributed, the misadjustment depends only on a parameter β controlling the update of step size. Simulation experiments show that the proposed algorithm performs very well. Furthermore, the theoretical steady-state behavior is in very good agreement with the experimental results. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2011.2181505 |