Hyper- and reverse-Wiener indices of F-sums of graphs

The Wiener index W ( G ) = ∑ { u , v } ⊂ V ( G ) d ( u , v ) , the hyper-Wiener index W W ( G ) = 1 2 ∑ { u , v } ⊂ V ( G ) [ d ( u , v ) + d 2 ( u , v ) ] and the reverse-Wiener index Λ ( G ) = n ( n − 1 ) D 2 − W ( G ) , where d ( u , v ) is the distance of two vertices u , v in G , d 2 ( u , v )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2010-07, Vol.158 (13), p.1433-1440
Hauptverfasser: Metsidik, Metrose, Zhang, Weijuan, Duan, Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Wiener index W ( G ) = ∑ { u , v } ⊂ V ( G ) d ( u , v ) , the hyper-Wiener index W W ( G ) = 1 2 ∑ { u , v } ⊂ V ( G ) [ d ( u , v ) + d 2 ( u , v ) ] and the reverse-Wiener index Λ ( G ) = n ( n − 1 ) D 2 − W ( G ) , where d ( u , v ) is the distance of two vertices u , v in G , d 2 ( u , v ) = d ( u , v ) 2 , n = | V ( G ) | and D is the diameter of G . In [M. Eliasi, B. Taeri, Four new sums of graphs and their Wiener indices, Discrete Appl. Math. 157 (2009) 794–803], Eliasi and Taeri introduced the F-sums of two connected graphs. In this paper, we determine the hyper- and reverse-Wiener indices of the F-sum graphs and, subject to some condition, we present some exact expressions of the reverse-Wiener indices of the F-sum graphs.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2010.04.003