A canonic-signed-digit coded genetic algorithm for designing finite impulse response digital filter

In this paper, the genetic algorithm (GA) based on Canonic Signed Digit (CSD) code was used to find the optimum design of a finite impulse response digital filter (FIR). By using the characteristics of the CSD structure, the circuit was able to be simplified and also the calculation speed was raised...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital signal processing 2010-03, Vol.20 (2), p.314-327
1. Verfasser: Pan, Shing-Tai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the genetic algorithm (GA) based on Canonic Signed Digit (CSD) code was used to find the optimum design of a finite impulse response digital filter (FIR). By using the characteristics of the CSD structure, the circuit was able to be simplified and also the calculation speed was raised to increase the hardware's efficiency. However, CSD structure cannot be guaranteed by a general GA after the evolution of chromosomes. Thus in this research an algorithm was proposed which the CSD structure can be maintained. A CSD coded GA was used to the evolution of chromosome to reduce the time wasted by trials and errors during the evolution and then to accelerate the training speed. In this paper, a new hybrid code for the filter coefficients was proposed to improve the precision of the coefficient of FIR. An example is shown in this paper to verify the efficiency of the proposed algorithm.
ISSN:1051-2004
1095-4333
DOI:10.1016/j.dsp.2009.06.024