Total coloring of planar graphs of maximum degree eight

The minimum number of colors needed to properly color the vertices and edges of a graph G is called the total chromatic number of G and denoted by χ ″ ( G ) . It is known that if a planar graph G has maximum degree Δ ⩾ 9 , then χ ″ ( G ) = Δ + 1 . Recently Hou et al. (Graphs and Combinatorics 24 (20...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2010-04, Vol.110 (8), p.321-324
Hauptverfasser: Roussel, Nicolas, Zhu, Xuding
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The minimum number of colors needed to properly color the vertices and edges of a graph G is called the total chromatic number of G and denoted by χ ″ ( G ) . It is known that if a planar graph G has maximum degree Δ ⩾ 9 , then χ ″ ( G ) = Δ + 1 . Recently Hou et al. (Graphs and Combinatorics 24 (2008) 91–100) proved that if G is a planar graph with maximum degree 8 and with either no 5-cycles or no 6-cycles, then χ ″ ( G ) = 9 . In this Note, we strengthen this result and prove that if G is a planar graph with maximum degree 8, and for each vertex x, there is an integer k x ∈ { 3 , 4 , 5 , 6 , 7 , 8 } such that there is no k x -cycle which contains x, then χ ″ ( G ) = 9 .
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2010.02.012