Dirac-Lu Space with Pseudo-Riemannian Metric of Constant Curvature
In this paper, we will discuss the geometries of the Dirac-Lu space whose boundary is the third conformal space Af defined by Dirac and Lu. We firstly give the S0(3, 3) invariant pseudo- Riemannian metric with constant curvature on this space, and then discuss the timelike geodesics. Finally we get...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2011-09, Vol.27 (9), p.1743-1752 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we will discuss the geometries of the Dirac-Lu space whose boundary is the third conformal space Af defined by Dirac and Lu. We firstly give the S0(3, 3) invariant pseudo- Riemannian metric with constant curvature on this space, and then discuss the timelike geodesics. Finally we get a solution of the Yang-Mills equation on it by using the reduction theorem of connections. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-011-8563-7 |