Dirac-Lu Space with Pseudo-Riemannian Metric of Constant Curvature

In this paper, we will discuss the geometries of the Dirac-Lu space whose boundary is the third conformal space Af defined by Dirac and Lu. We firstly give the S0(3, 3) invariant pseudo- Riemannian metric with constant curvature on this space, and then discuss the timelike geodesics. Finally we get...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2011-09, Vol.27 (9), p.1743-1752
Hauptverfasser: Ren, Xin An, Chen, Li, Wang, Gui Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we will discuss the geometries of the Dirac-Lu space whose boundary is the third conformal space Af defined by Dirac and Lu. We firstly give the S0(3, 3) invariant pseudo- Riemannian metric with constant curvature on this space, and then discuss the timelike geodesics. Finally we get a solution of the Yang-Mills equation on it by using the reduction theorem of connections.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-011-8563-7