Synthesis of nano-crystalline Zr-M (M=Ni, Co, Fe, Cu) bilayer films and their thermodynamics of hydrogen uptake by resistance measurement

Nano-crystalline thin metal films for hydride formation for small amount of hydrogen storage is an emerging field of research for portable applications e.g. thin film fuel cells. Nano-crystalline films of Zr/ M (M = Ni, Co, Fe, Cu) bilayer systems were synthesized using ion beam sputtering technique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2010-09, Vol.35 (18), p.9893-9900
Hauptverfasser: Agarwal, Shivani, Jain, Ankur, Jain, Pragya, Vyas, Devendra, Ganesan, V., Jain, I.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nano-crystalline thin metal films for hydride formation for small amount of hydrogen storage is an emerging field of research for portable applications e.g. thin film fuel cells. Nano-crystalline films of Zr/ M (M = Ni, Co, Fe, Cu) bilayer systems were synthesized using ion beam sputtering technique in argon atmosphere which were characterized using GIXRD and AFM techniques. In thin film metal hydride it is difficult to measure P-C-T isotherm because of the small amount of hydrogen present and the same difficulty is to study thermodynamics of such systems. Hence in the present work change in electrical resistance with hydrogen pressure in temperatures range 298 to 573 K has been used to investigate thermodynamic properties and found that resistance of film increases with the absorption of hydrogen and decreases due to hydrogen desorption.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2009.10.003