Exploration of unalloyed bimetallic Au–Pt/C nanoparticles for oxygen reduction reaction

The synthesis of carbon-supported unalloyed Au–Pt bimetallic nanoparticles using polyol method at a temperature as low as 85 °C is reported. Various compositions of Au–Pt/C bimetallic nanoparticles are characterized using transmission electron microscopy (TEM), X-ray florescence (XRF), X-ray diffrac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2009-02, Vol.187 (1), p.19-24
Hauptverfasser: Senthil Kumar, S., Phani, K.L.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The synthesis of carbon-supported unalloyed Au–Pt bimetallic nanoparticles using polyol method at a temperature as low as 85 °C is reported. Various compositions of Au–Pt/C bimetallic nanoparticles are characterized using transmission electron microscopy (TEM), X-ray florescence (XRF), X-ray diffraction and cyclic voltammetry. Electron microscopy shows that the particles have a near-narrow size distribution that peaks at an average size of ∼5 to 6 nm. The electrocatalytic activity of Au–Pt/C nanoparticles towards the oxygen reduction reaction (ORR) is studied by linear sweep polarization measurements obtained using a rotating disc electrode (RDE). The results reveal that a four-electron transfer pathway is mainly operative for ORR and the half-wave potential for ORR on bimetallic Au–Pt/C (20%:20%) is ∼100 mV less negative when compared with that of Pt/C (home-made and E-Tek). Studies of the methanol oxidation reaction (MOR) on these catalysts show that the MOR activity is significantly lowered with increasing content of Au in Au–Pt/C.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2008.10.121