A NARMAX model-based state-space self-tuning control for nonlinear stochastic hybrid systems

A novel state-space self-tuning control methodology for a nonlinear stochastic hybrid system with stochastic noise/disturbances is proposed in this paper. via the optimal linearization approach, an adjustable NARMAX-based noise model with estimated states can be constructed for the state-space self-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2010-10, Vol.34 (10), p.3030-3054
Hauptverfasser: Tsai, Jason Sheng-Hong, Wang, Chu-Tong, Kuang, Chi-Chieh, Guo, Shu-Mei, Shieh, Leang-San, Chen, Chia-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel state-space self-tuning control methodology for a nonlinear stochastic hybrid system with stochastic noise/disturbances is proposed in this paper. via the optimal linearization approach, an adjustable NARMAX-based noise model with estimated states can be constructed for the state-space self-tuning control in nonlinear continuous-time stochastic systems. Then, a corresponding adaptive digital control scheme is proposed for continuous-time multivariable nonlinear stochastic systems, which have unknown system parameters, measurement noise/external disturbances, and inaccessible system states. The proposed method enables the development of a digitally implementable advanced control algorithm for nonlinear stochastic hybrid systems.
ISSN:0307-904X
DOI:10.1016/j.apm.2010.01.011