A NARMAX model-based state-space self-tuning control for nonlinear stochastic hybrid systems
A novel state-space self-tuning control methodology for a nonlinear stochastic hybrid system with stochastic noise/disturbances is proposed in this paper. via the optimal linearization approach, an adjustable NARMAX-based noise model with estimated states can be constructed for the state-space self-...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2010-10, Vol.34 (10), p.3030-3054 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel state-space self-tuning control methodology for a nonlinear stochastic hybrid system with stochastic noise/disturbances is proposed in this paper. via the optimal linearization approach, an adjustable NARMAX-based noise model with estimated states can be constructed for the state-space self-tuning control in nonlinear continuous-time stochastic systems. Then, a corresponding adaptive digital control scheme is proposed for continuous-time multivariable nonlinear stochastic systems, which have unknown system parameters, measurement noise/external disturbances, and inaccessible system states. The proposed method enables the development of a digitally implementable advanced control algorithm for nonlinear stochastic hybrid systems. |
---|---|
ISSN: | 0307-904X |
DOI: | 10.1016/j.apm.2010.01.011 |