SPIRAL: Code Generation for DSP Transforms

Fast changing, increasingly complex, and diverse computing platforms pose central problems in scientific computing: How to achieve, with reasonable effort, portable optimal performance? We present SPIRAL, which considers this problem for the performance-critical domain of linear digital signal proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2005-02, Vol.93 (2), p.232-275
Hauptverfasser: Puschel, M., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N., Moura, J.M.F., Johnson, J.R., Padua, D., Veloso, M.M., Singer, B.W., Jianxin Xiong, Franchetti, F., Gacic, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fast changing, increasingly complex, and diverse computing platforms pose central problems in scientific computing: How to achieve, with reasonable effort, portable optimal performance? We present SPIRAL, which considers this problem for the performance-critical domain of linear digital signal processing (DSP) transforms. For a specified transform, SPIRAL automatically generates high-performance code that is tuned to the given platform. SPIRAL formulates the tuning as an optimization problem and exploits the domain-specific mathematical structure of transform algorithms to implement a feedback-driven optimizer. Similar to a human expert, for a specified transform, SPIRAL "intelligently" generates and explores algorithmic and implementation choices to find the best match to the computer's microarchitecture. The "intelligence" is provided by search and learning techniques that exploit the structure of the algorithm and implementation space to guide the exploration and optimization. SPIRAL generates high-performance code for a broad set of DSP transforms, including the discrete Fourier transform, other trigonometric transforms, filter transforms, and discrete wavelet transforms. Experimental results show that the code generated by SPIRAL competes with, and sometimes outperforms, the best available human tuned transform library code.
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2004.840306