Efficient simulation of unsaturated flow using exponential time integration

We assess the performance of an exponential integrator for advancing stiff, semidiscrete formulations of the unsaturated Richards equation in time. The scheme is of second order and explicit in nature but requires the action of the matrix function φ( A) = A −1( e A − I) on a suitability defined vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2011-03, Vol.217 (14), p.6587-6596
Hauptverfasser: Carr, E.J., Moroney, T.J., Turner, I.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We assess the performance of an exponential integrator for advancing stiff, semidiscrete formulations of the unsaturated Richards equation in time. The scheme is of second order and explicit in nature but requires the action of the matrix function φ( A) = A −1( e A − I) on a suitability defined vector v at each time step. When the matrix A is large and sparse, φ( A) v can be approximated by Krylov subspace methods that require only matrix–vector products with A. We prove that despite the use of this approximation the scheme remains second order. Furthermore, we provide a practical variable-stepsize implementation of the integrator by deriving an estimate of the local error that requires only a single additional function evaluation. Numerical experiments performed on two-dimensional test problems demonstrate that this implementation outperforms second-order, variable-stepsize implementations of the backward differentiation formulae.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2011.01.041