Crystallisation mechanism of a multicomponent lithium alumino-silicate glass
A base glass of composition 3.5 Li2O∙0.15 Na2O∙0.2 K2O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al2O3∙67.2 SiO2∙2.6 TiO2∙1.7 ZrO2∙1.2 As2O3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined w...
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2012-06, Vol.134 (2-3), p.1001-1006 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1006 |
---|---|
container_issue | 2-3 |
container_start_page | 1001 |
container_title | Materials chemistry and physics |
container_volume | 134 |
creator | Wurth, R. Pascual, M.J. Mather, G.C. Pablos-Martín, A. Muñoz, F. Durán, A. Cuello, G.J. Rüssel, C. |
description | A base glass of composition 3.5 Li2O∙0.15 Na2O∙0.2 K2O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al2O3∙67.2 SiO2∙2.6 TiO2∙1.7 ZrO2∙1.2 As2O3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi2O6 with nanoscaled crystals forms at 750°C. Quantitative Rietveld refinement of samples annealed at 750°C for 8h determined a crystallised fraction of around 59wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2×2×2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531±20kJ mol−1.
► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2×2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter. |
doi_str_mv | 10.1016/j.matchemphys.2012.03.103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671304346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058412003537</els_id><sourcerecordid>1031310881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-5afbe64b553c890a2787305c7bce9fa66095477e00bd74bf744d79633e9385c3</originalsourceid><addsrcrecordid>eNqNkD1PwzAURS0EEqXwH8LGkvKc58TJiCq-pEos7JbjvFBXdlxiB6n_nlRlYIPpDffcI73L2C2HFQde3e9WXiezJb_fHuKqAF6sAOcIz9iC17LJEXlxzhZQlCKHshaX7CrGHQCXnOOCbdbjISbtnI062TBknsxWDzb6LPSZzvzkkjXB78NAQ8qcTVs7-Uy7ydsh5NE6a3Si7MPpGK_ZRa9dpJufu2TvT4_v65d88_b8un7Y5AZrmfJS9y1Voi1LNHUDupC1RCiNbA01va4qaEohJQG0nRRtL4XoZFMhUoN1aXDJ7k7a_Rg-J4pJeRsNOacHClNUvJIcQaCo_kYBOXKoaz6jzQk1Y4hxpF7tR-v1eJghddxa7dSvrdVxawV4VMzd9alL89dflkYVjaXBUGdHMkl1wf7D8g1L4I6l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031310881</pqid></control><display><type>article</type><title>Crystallisation mechanism of a multicomponent lithium alumino-silicate glass</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wurth, R. ; Pascual, M.J. ; Mather, G.C. ; Pablos-Martín, A. ; Muñoz, F. ; Durán, A. ; Cuello, G.J. ; Rüssel, C.</creator><creatorcontrib>Wurth, R. ; Pascual, M.J. ; Mather, G.C. ; Pablos-Martín, A. ; Muñoz, F. ; Durán, A. ; Cuello, G.J. ; Rüssel, C.</creatorcontrib><description>A base glass of composition 3.5 Li2O∙0.15 Na2O∙0.2 K2O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al2O3∙67.2 SiO2∙2.6 TiO2∙1.7 ZrO2∙1.2 As2O3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi2O6 with nanoscaled crystals forms at 750°C. Quantitative Rietveld refinement of samples annealed at 750°C for 8h determined a crystallised fraction of around 59wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2×2×2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531±20kJ mol−1.
► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2×2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2012.03.103</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Annealing ; Channels ; Crystallization ; Differential scanning calorimetry ; DSC ; Glass ; High-quartz solid solution ; Lithium ; Lithium alumino-silicate glass ; Nanocomposites ; Nanocrystallisation ; Nanomaterials ; Nanostructure ; Neutron diffraction ; Solid solutions</subject><ispartof>Materials chemistry and physics, 2012-06, Vol.134 (2-3), p.1001-1006</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-5afbe64b553c890a2787305c7bce9fa66095477e00bd74bf744d79633e9385c3</citedby><cites>FETCH-LOGICAL-c387t-5afbe64b553c890a2787305c7bce9fa66095477e00bd74bf744d79633e9385c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0254058412003537$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Wurth, R.</creatorcontrib><creatorcontrib>Pascual, M.J.</creatorcontrib><creatorcontrib>Mather, G.C.</creatorcontrib><creatorcontrib>Pablos-Martín, A.</creatorcontrib><creatorcontrib>Muñoz, F.</creatorcontrib><creatorcontrib>Durán, A.</creatorcontrib><creatorcontrib>Cuello, G.J.</creatorcontrib><creatorcontrib>Rüssel, C.</creatorcontrib><title>Crystallisation mechanism of a multicomponent lithium alumino-silicate glass</title><title>Materials chemistry and physics</title><description>A base glass of composition 3.5 Li2O∙0.15 Na2O∙0.2 K2O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al2O3∙67.2 SiO2∙2.6 TiO2∙1.7 ZrO2∙1.2 As2O3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi2O6 with nanoscaled crystals forms at 750°C. Quantitative Rietveld refinement of samples annealed at 750°C for 8h determined a crystallised fraction of around 59wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2×2×2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531±20kJ mol−1.
► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2×2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.</description><subject>Annealing</subject><subject>Channels</subject><subject>Crystallization</subject><subject>Differential scanning calorimetry</subject><subject>DSC</subject><subject>Glass</subject><subject>High-quartz solid solution</subject><subject>Lithium</subject><subject>Lithium alumino-silicate glass</subject><subject>Nanocomposites</subject><subject>Nanocrystallisation</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Neutron diffraction</subject><subject>Solid solutions</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAURS0EEqXwH8LGkvKc58TJiCq-pEos7JbjvFBXdlxiB6n_nlRlYIPpDffcI73L2C2HFQde3e9WXiezJb_fHuKqAF6sAOcIz9iC17LJEXlxzhZQlCKHshaX7CrGHQCXnOOCbdbjISbtnI062TBknsxWDzb6LPSZzvzkkjXB78NAQ8qcTVs7-Uy7ydsh5NE6a3Si7MPpGK_ZRa9dpJufu2TvT4_v65d88_b8un7Y5AZrmfJS9y1Voi1LNHUDupC1RCiNbA01va4qaEohJQG0nRRtL4XoZFMhUoN1aXDJ7k7a_Rg-J4pJeRsNOacHClNUvJIcQaCo_kYBOXKoaz6jzQk1Y4hxpF7tR-v1eJghddxa7dSvrdVxawV4VMzd9alL89dflkYVjaXBUGdHMkl1wf7D8g1L4I6l</recordid><startdate>20120615</startdate><enddate>20120615</enddate><creator>Wurth, R.</creator><creator>Pascual, M.J.</creator><creator>Mather, G.C.</creator><creator>Pablos-Martín, A.</creator><creator>Muñoz, F.</creator><creator>Durán, A.</creator><creator>Cuello, G.J.</creator><creator>Rüssel, C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120615</creationdate><title>Crystallisation mechanism of a multicomponent lithium alumino-silicate glass</title><author>Wurth, R. ; Pascual, M.J. ; Mather, G.C. ; Pablos-Martín, A. ; Muñoz, F. ; Durán, A. ; Cuello, G.J. ; Rüssel, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-5afbe64b553c890a2787305c7bce9fa66095477e00bd74bf744d79633e9385c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Annealing</topic><topic>Channels</topic><topic>Crystallization</topic><topic>Differential scanning calorimetry</topic><topic>DSC</topic><topic>Glass</topic><topic>High-quartz solid solution</topic><topic>Lithium</topic><topic>Lithium alumino-silicate glass</topic><topic>Nanocomposites</topic><topic>Nanocrystallisation</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Neutron diffraction</topic><topic>Solid solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wurth, R.</creatorcontrib><creatorcontrib>Pascual, M.J.</creatorcontrib><creatorcontrib>Mather, G.C.</creatorcontrib><creatorcontrib>Pablos-Martín, A.</creatorcontrib><creatorcontrib>Muñoz, F.</creatorcontrib><creatorcontrib>Durán, A.</creatorcontrib><creatorcontrib>Cuello, G.J.</creatorcontrib><creatorcontrib>Rüssel, C.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wurth, R.</au><au>Pascual, M.J.</au><au>Mather, G.C.</au><au>Pablos-Martín, A.</au><au>Muñoz, F.</au><au>Durán, A.</au><au>Cuello, G.J.</au><au>Rüssel, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallisation mechanism of a multicomponent lithium alumino-silicate glass</atitle><jtitle>Materials chemistry and physics</jtitle><date>2012-06-15</date><risdate>2012</risdate><volume>134</volume><issue>2-3</issue><spage>1001</spage><epage>1006</epage><pages>1001-1006</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>A base glass of composition 3.5 Li2O∙0.15 Na2O∙0.2 K2O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al2O3∙67.2 SiO2∙2.6 TiO2∙1.7 ZrO2∙1.2 As2O3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi2O6 with nanoscaled crystals forms at 750°C. Quantitative Rietveld refinement of samples annealed at 750°C for 8h determined a crystallised fraction of around 59wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2×2×2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531±20kJ mol−1.
► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2×2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2012.03.103</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-0584 |
ispartof | Materials chemistry and physics, 2012-06, Vol.134 (2-3), p.1001-1006 |
issn | 0254-0584 1879-3312 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671304346 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Annealing Channels Crystallization Differential scanning calorimetry DSC Glass High-quartz solid solution Lithium Lithium alumino-silicate glass Nanocomposites Nanocrystallisation Nanomaterials Nanostructure Neutron diffraction Solid solutions |
title | Crystallisation mechanism of a multicomponent lithium alumino-silicate glass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallisation%20mechanism%20of%20a%20multicomponent%20lithium%20alumino-silicate%20glass&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Wurth,%20R.&rft.date=2012-06-15&rft.volume=134&rft.issue=2-3&rft.spage=1001&rft.epage=1006&rft.pages=1001-1006&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2012.03.103&rft_dat=%3Cproquest_cross%3E1031310881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031310881&rft_id=info:pmid/&rft_els_id=S0254058412003537&rfr_iscdi=true |