Crystallisation mechanism of a multicomponent lithium alumino-silicate glass
A base glass of composition 3.5 Li2O∙0.15 Na2O∙0.2 K2O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al2O3∙67.2 SiO2∙2.6 TiO2∙1.7 ZrO2∙1.2 As2O3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined w...
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2012-06, Vol.134 (2-3), p.1001-1006 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A base glass of composition 3.5 Li2O∙0.15 Na2O∙0.2 K2O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al2O3∙67.2 SiO2∙2.6 TiO2∙1.7 ZrO2∙1.2 As2O3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi2O6 with nanoscaled crystals forms at 750°C. Quantitative Rietveld refinement of samples annealed at 750°C for 8h determined a crystallised fraction of around 59wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2×2×2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531±20kJ mol−1.
► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2×2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter. |
---|---|
ISSN: | 0254-0584 1879-3312 |
DOI: | 10.1016/j.matchemphys.2012.03.103 |