Effect of irradiation on mechanical and structural properties of ethylene vinyl acetate copolymers hollow fibers

Effect of irradiation on mechanical and structural properties of ethylene vinyl acetate copolymers (EVA) hollow fibers was studied by the tests such as determination of gel content, density, tensile, FTIR, SEM, and DMA. These effects were discussed based on dose and irradiation environment. The resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2011-02, Vol.119 (4), p.2085-2092
Hauptverfasser: Khodkar, F., Ebrahimi, N. Golshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effect of irradiation on mechanical and structural properties of ethylene vinyl acetate copolymers (EVA) hollow fibers was studied by the tests such as determination of gel content, density, tensile, FTIR, SEM, and DMA. These effects were discussed based on dose and irradiation environment. The results of gel content depicted that irradiated EVA in ambient conditions had tendency to chain scission while the crosslinking overcame in irradiated samples under nitrogen. Density insignificantly enhanced with irradiation dose. In tensile test, irradiation induced increase in tensile strength and decrease in elongation at break (especially in samples irradiated in nitrogen). Also, changing in layer orientation could be observed by SEM images. In addition, irradiation caused altering peak intensity in FTIR spectrum. DMA results demonstrated that irradiation broaden the elastic zone. Totally, irradiation enhances features especially in irradiated EVA18 in nitrogen. Since, according to stabilization of induced deformation and improvement of mechanical properties (that created by radiation), the irradiated samples can be used in different applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
ISSN:0021-8995
1097-4628
1097-4628
DOI:10.1002/app.32926