Effect of different ion beam energy on properties of amorphous carbon film fabricated by ion beam sputtering deposition (IBSD)

Amorphous carbon (a-C) films were fabricated by ion beam sputtering technique. The influence of sputtering ion beam energy on bonding structure, morphologic, mechanical properties, tribological properties and corrosion resistance of a-C films are investigated systematically. Morphology study shows t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2011-09, Vol.269 (17), p.1871-1877
Hauptverfasser: Bai, Lichun, Zhang, Guangan, Wu, Zhiguo, Wang, Jun, Yan, Pengxun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amorphous carbon (a-C) films were fabricated by ion beam sputtering technique. The influence of sputtering ion beam energy on bonding structure, morphologic, mechanical properties, tribological properties and corrosion resistance of a-C films are investigated systematically. Morphology study shows that lowest surface roughness exists for mid-ion beam energy. Improved adhesion is observed for the films that are prepared under high ion beam energy, attributed to film graphitization, low residual stress and mixed interface. Relatively, a-C films prepared with ion beam energy of 2 keV exhibits optimum sp 3 bond content, mechanical properties and corrosion resistance. It is found that the wear rate of DLC films decrease with increased ion beam energy in general, consistent with the varied trend of the H/ E value which has been regarded as a suitable parameter for predicting wear resistance of the coatings. The correlation of the sp 3 bond fraction in the films estimated from Raman spectroscopy with residual stress, nanohardness and corrosion resistance has been established.
ISSN:0168-583X
1872-9584
DOI:10.1016/j.nimb.2011.05.017