The improved linear multistep methods for differential equations with piecewise continuous arguments

This paper deals with the convergence of the linear multistep methods for the equation x′( t) = ax( t) + a 0 x([ t]). Numerical experiments demonstrate that the 2-step Adams–Bashforth method is only of order p = 0 when applied to the given equation. An improved linear multistep methods is constructe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2010-12, Vol.217 (8), p.4002-4009
Hauptverfasser: Song, M.H., Liu, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the convergence of the linear multistep methods for the equation x′( t) = ax( t) + a 0 x([ t]). Numerical experiments demonstrate that the 2-step Adams–Bashforth method is only of order p = 0 when applied to the given equation. An improved linear multistep methods is constructed. It is proved that these methods preserve their original convergence order for ordinary differential equations (ODEs) and some numerical experiments are given.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2010.10.006