Scaling effects upon fractal etch pattern formation on silicon photoelectrodes
Fractal etch structures on n-type silicon photoelectrodes were obtained under anodic bias in concentrated ammonium fluoride solution. The propagating branches of the structures generally reflect the surface lattice geometry of the substrates on a micrometer-scale while inner topographies are charact...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2009-12, Vol.55 (2), p.340-349 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fractal etch structures on n-type silicon photoelectrodes were obtained under anodic bias in concentrated ammonium fluoride solution. The propagating branches of the structures generally reflect the surface lattice geometry of the substrates on a micrometer-scale while inner topographies are characterized by ensembles of slow-etching planes. In a medium and high photon flux range, scaling effects on Si(1
0
0) were observed for gradually increased light intensities: while the number of structures increases, the structure size reduces to the sub-micrometer range. Simultaneously, the thickness of integrally measured anodic oxides, analyzed by X-ray photoelectron spectroscopy, was found to decrease. These observations are addressed in model considerations where multi-axial stress at the SiO
2/Si interface is assumed to provide the feedback mechanism of the dynamic system and to result in locally increased substrate dissolution. A simplified flow-diagram for computer simulations, in agreement with numerical in-plane stress analysis, was finally developed which allows for prediction of the propagation process on arbitrary lattice geometries and for varied experimental conditions. |
---|---|
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2009.04.052 |