Complex Independent Component Analysis by Entropy Bound Minimization
We first present a new (differential) entropy estimator for complex random variables by approximating the entropy estimate using a numerically computed maximum entropy bound. The associated maximum entropy distributions belong to the class of weighted linear combinations and elliptical distributions...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2010-07, Vol.57 (7), p.1417-1430 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We first present a new (differential) entropy estimator for complex random variables by approximating the entropy estimate using a numerically computed maximum entropy bound. The associated maximum entropy distributions belong to the class of weighted linear combinations and elliptical distributions, and together, they provide a rich array of bivariate distributions for density matching. Next, we introduce a new complex independent component analysis (ICA) algorithm, complex ICA by entropy-bound minimization (complex ICA-EBM), using this new entropy estimator and a line search optimization procedure. We present simulation results to demonstrate the superior separation performance and computational efficiency of complex ICA-EBM in separation of complex sources that come from a wide range of bivariate distributions. |
---|---|
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2010.2046207 |