CFD modelling of wall steam condensation by a two-phase flow approach

Condensation heat transfer in the presence of non-condensable gases is a relevant phenomenon in many industrial applications. The present work is focused on the condensation heat transfer that plays a dominant role in many accident scenarios postulated to occur in the containment of nuclear reactors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design 2011-11, Vol.241 (11), p.4445-4455
Hauptverfasser: Mimouni, S., Foissac, A., Lavieville, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Condensation heat transfer in the presence of non-condensable gases is a relevant phenomenon in many industrial applications. The present work is focused on the condensation heat transfer that plays a dominant role in many accident scenarios postulated to occur in the containment of nuclear reactors. The aim of the study is to contribute to the understanding of the heat and mass transfer mechanisms involved in the problem. The modelling proposed in the paper assumes that liquid droplets form along the wall at nucleation sites. Vapor condensation on droplets makes them to grow. Once the droplet diameter reaches a critical value, gravitational forces compensate surface tension force and then droplets slide over the wall. Droplets can also join the surrounding droplets and form a film layer. As a consequence of the modelling adopted in the paper, the starting point is the balance of heat and mass transfer between droplets and the gas mixture surrounding the droplet. So, the flow in the simulation domain is modelled as a two-phase flow. This approach allows taking into account simultaneously heat and mass transfer on droplets in the core of the flow and condensation or evaporation phenomena at the wall. Two tests were performed to validate the condensation model against experimental data: the COPAIN experiment (CEA Grenoble) and the TOSQAN ISP47 experiment (IRSN Saclay). Calculated profiles compare favourably with experimental results particularly for the helium and steam volume fraction. Nevertheless the cross-comparison of the gas velocities profiles should be improved in plume-jet configuration. Hence more investigations are needed in turbulence modelling for accurate predictions of heat transfer in the whole containment.
ISSN:0029-5493
1872-759X
DOI:10.1016/j.nucengdes.2010.09.020