Lambda-fold 2-perfect 6-cycle systems in equipartite graphs
A 6-cycle system of a graph G is an edge-disjoint decomposition of G into 6-cycles. Graphs G, for which necessary and sufficient conditions for existence of a 6-cycle system have been found, include complete graphs and complete equipartite graphs. A 6-cycle system of G is said to be 2-perfect if the...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2011-11, Vol.311 (21), p.2423-2427 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A 6-cycle system of a graph G is an edge-disjoint decomposition of G into 6-cycles. Graphs G, for which necessary and sufficient conditions for existence of a 6-cycle system have been found, include complete graphs and complete equipartite graphs. A 6-cycle system of G is said to be 2-perfect if the graph formed by joining all vertices distance 2 apart in the 6-cycles is again an edge-disjoint decomposition of G, this time into 3-cycles, since the distance 2 graph in any 6-cycle is a pair of disjoint 3-cycles.
Necessary and sufficient conditions for existence of 2-perfect 6-cycle systems of both complete graphs and complete equipartite graphs are known, and also of λ-fold complete graphs. In this paper, we complete the problem, giving necessary and sufficient conditions for existence of λ-fold 2-perfect 6-cycle systems of complete equipartite graphs.
► We consider lambda-fold 2-perfect 6-cycle systems of complete equipartite graphs. ► We give necessary and sufficient conditions for existence of these. ► This completely solves the existence problem for all lambda. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2011.06.026 |