Experimental study of influence of temperature on fuel-N conversion and recycle NO reduction in oxyfuel combustion

Coal combustion in O 2/CO 2 environment was examined with a bituminous coal in which the gas-phase and char combustion stages were considered separately. The effects of temperature (1000–1300 °C) and the excess oxygen ratio λ (0.6–1.4) on the conversion of volatile-N and char-N to NO x were studied....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Combustion Institute 2011, Vol.33 (2), p.1731-1738
Hauptverfasser: Sun, Shaozeng, Cao, Huali, Chen, Hao, Wang, Xiaoyu, Qian, Juan, Wall, Terry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coal combustion in O 2/CO 2 environment was examined with a bituminous coal in which the gas-phase and char combustion stages were considered separately. The effects of temperature (1000–1300 °C) and the excess oxygen ratio λ (0.6–1.4) on the conversion of volatile-N and char-N to NO x were studied. Also, the reduction of recycle NO x by fuel-N was investigated under various conditions. The results show that fuel-N conversion to NO in O 2/CO 2 is lower than that in O 2/N 2. In O 2/CO 2 atmosphere, the volatile-N conversion ratios vary from 1–7% to 15–24% under fuel-rich and fuel-lean conditions, respectively. The char-N conversion ratios are 11–28% and 30–50% under fuel-rich and fuel-lean conditions, respectively. The influences of temperature on the conversion of volatile-N to NO under fuel-rich and fuel-lean conditions are contrary. A significant difference for char-N conversion in fuel-rich and fuel-lean conditions is observed. The experimental data of recycle NO reduction indicate that the reduction of recycle NO by gas-phase reaction can be enhanced by volatile-N addition in fuel-lean condition at high temperature, while in fuel-rich condition, the volatile-N influence cancelled out and the overall impact is small. NO/char reaction competes with the conversion of fuel-N to NO at higher temperatures.
ISSN:1540-7489
1873-2704
DOI:10.1016/j.proci.2010.06.014