Orthorectification of VHR optical satellite data exploiting the geometric accuracy of TerraSAR-X data

Orthorectification of satellite data is one of the most important pre-processing steps for application oriented evaluations and for image data input into Geographic Information Systems. Although high- and very high-resolution optical data can be rectified without ground control points (GCPs) using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS journal of photogrammetry and remote sensing 2011, Vol.66 (1), p.124-132
Hauptverfasser: Reinartz, Peter, Müller, Rupert, Schwind, Peter, Suri, Sahil, Bamler, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Orthorectification of satellite data is one of the most important pre-processing steps for application oriented evaluations and for image data input into Geographic Information Systems. Although high- and very high-resolution optical data can be rectified without ground control points (GCPs) using an underlying digital elevation model (DEM) to positional root mean square errors (RMSEs) between 3 m and several hundred meters (depending on the satellite), there is still need for ground control with higher precision to reach lower RMSE values for the orthoimages. The very high geometric accuracy of geocoded data of the TerraSAR-X satellite has been shown in several investigations. This is due to the fact that the SAR antenna measures distances which are mainly dependent on the terrain height and the position of the satellite. The latter can be measured with high precision, whereas the satellite attitude need not be known exactly. If the used DEM is of high accuracy, the resulting geocoded SAR data are very precise in their geolocation. This precision can be exploited to improve the orientation knowledge and thereby the geometric accuracy of the rectified optical satellite data. The challenge is to match two kinds of image data, which exhibit very different geometric and radiometric properties. Simple correlation techniques do not work and the goal is to develop a robust method which works even for urban areas, including radar shadows, layover and foreshortening effects. First the optical data have to be rectified with the available interior and exterior orientation data or using rational polynomial coefficients (RPCs). From this approximation, the technique used is the measurement of small identical areas in the optical and radar images by automatic image matching, using a newly developed adapted mutual information procedure followed by an estimation of correction terms for the exterior orientation or the RPC coefficients. The matching areas are selected randomly from a regular grid covering the whole imagery. By adjustment calculations, parameters from falsely matched areas can be eliminated and optimal improvement parameters are found. The original optical data are orthorectified again using the delivered metadata together with these corrections and the available DEM. As proof of method the orthorectified data from IKONOS and ALOS-PRISM sensors are compared with conventional ground control information from high-precision orthoimage maps of the German Cartog
ISSN:0924-2716
1872-8235
DOI:10.1016/j.isprsjprs.2010.10.003