Shortest vertex-disjoint two-face paths in planar graphs
Let G be a directed planar graph of complexity n , each arc having a nonnegative length. Let s and t be two distinct faces of G let s 1 ,…, s k be vertices incident with s let t 1 ,…, t k be vertices incident with t . We give an algorithm to compute k pairwise vertex-disjoint paths connecting the pa...
Gespeichert in:
Veröffentlicht in: | ACM transactions on algorithms 2011-03, Vol.7 (2), p.1-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a directed planar graph of complexity
n
, each arc having a nonnegative length. Let
s
and
t
be two distinct faces of
G
let
s
1
,…,
s
k
be vertices incident with
s
let
t
1
,…,
t
k
be vertices incident with
t
. We give an algorithm to compute
k
pairwise vertex-disjoint paths connecting the pairs (
s
i
,
t
i
) in
G
, with minimal total length, in
O
(
kn
log
n
) time. |
---|---|
ISSN: | 1549-6325 1549-6333 |
DOI: | 10.1145/1921659.1921665 |