Shortest vertex-disjoint two-face paths in planar graphs

Let G be a directed planar graph of complexity n , each arc having a nonnegative length. Let s and t be two distinct faces of G let s 1 ,…, s k be vertices incident with s let t 1 ,…, t k be vertices incident with t . We give an algorithm to compute k pairwise vertex-disjoint paths connecting the pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on algorithms 2011-03, Vol.7 (2), p.1-12
Hauptverfasser: Verdière, Éric Colin De, Schrijver, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a directed planar graph of complexity n , each arc having a nonnegative length. Let s and t be two distinct faces of G let s 1 ,…, s k be vertices incident with s let t 1 ,…, t k be vertices incident with t . We give an algorithm to compute k pairwise vertex-disjoint paths connecting the pairs ( s i , t i ) in G , with minimal total length, in O ( kn log n ) time.
ISSN:1549-6325
1549-6333
DOI:10.1145/1921659.1921665