A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor
In this paper we consider the strongly damped wave equation with time-dependent terms u t t − Δ u − γ ( t ) Δ u t + β ε ( t ) u t = f ( u ) , in a bounded domain Ω ⊂ R n , under some restrictions on β ε ( t ) , γ ( t ) and growth restrictions on the nonlinear term f . The function β ε ( t ) depends...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2011-03, Vol.74 (6), p.2272-2283 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider the strongly damped wave equation with time-dependent terms
u
t
t
−
Δ
u
−
γ
(
t
)
Δ
u
t
+
β
ε
(
t
)
u
t
=
f
(
u
)
,
in a bounded domain
Ω
⊂
R
n
, under some restrictions on
β
ε
(
t
)
,
γ
(
t
)
and growth restrictions on the nonlinear term
f
. The function
β
ε
(
t
)
depends on a parameter
ε
,
β
ε
(
t
)
⟶
ε
→
0
0
. We will prove, under suitable assumptions, local and global well-posedness (using the uniform sectorial operators theory), the existence and regularity of pullback attractors
{
A
ε
(
t
)
:
t
∈
R
}
, uniform bounds for these pullback attractors, characterization of these pullback attractors and their upper and lower semicontinuity at
ϵ
=
0
. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2010.11.032 |