A Study on the Operating Characteristics of SMES for the Dispersed Power Generation System
WPGS (Wind Power Generation System) output fluctuates due to wind speed variations and PV power generation output is changed by sudden cloudy weather conditions. Hence, if a large number of wind and PV power generators are connected to power system, their output can cause a serious influence on the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2009-06, Vol.19 (3), p.2028-2031 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | WPGS (Wind Power Generation System) output fluctuates due to wind speed variations and PV power generation output is changed by sudden cloudy weather conditions. Hence, if a large number of wind and PV power generators are connected to power system, their output can cause a serious influence on the power system operation, that is, frequency and voltage fluctuations. In order to solve these problems, the control of generator output fluctuations is very important. With these points as background, Superconducting Magnetic Energy Storage (SMES) is probably a key technology to overcome these fluctuations. For stabilization of power, the SMES is connected to the terminal of the WPGS. The authors compared the load side frequencies under the 1 MJ and 2.5 MJ of SMES connection, respectively. From the simulation results, it can be concluded that the SMES is a very effective device for stabilization of power system and minimization of frequency fluctuations. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2009.2018495 |