A Study on the Operating Characteristics of SMES for the Dispersed Power Generation System

WPGS (Wind Power Generation System) output fluctuates due to wind speed variations and PV power generation output is changed by sudden cloudy weather conditions. Hence, if a large number of wind and PV power generators are connected to power system, their output can cause a serious influence on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2009-06, Vol.19 (3), p.2028-2031
Hauptverfasser: Hee-Yeol Jung, A-Rong Kim, Jae-Ho Kim, Minwon Park, In-Keun Yu, Seok-Ho Kim, Kideok Sim, Hae-Jong Kim, Ki-Chul Seong, Asao, T., Tamura, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:WPGS (Wind Power Generation System) output fluctuates due to wind speed variations and PV power generation output is changed by sudden cloudy weather conditions. Hence, if a large number of wind and PV power generators are connected to power system, their output can cause a serious influence on the power system operation, that is, frequency and voltage fluctuations. In order to solve these problems, the control of generator output fluctuations is very important. With these points as background, Superconducting Magnetic Energy Storage (SMES) is probably a key technology to overcome these fluctuations. For stabilization of power, the SMES is connected to the terminal of the WPGS. The authors compared the load side frequencies under the 1 MJ and 2.5 MJ of SMES connection, respectively. From the simulation results, it can be concluded that the SMES is a very effective device for stabilization of power system and minimization of frequency fluctuations.
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2009.2018495