An atomistically-informed dislocation dynamics model for the plastic anisotropy and tension–compression asymmetry of BCC metals

Atomistic simulations have shown that a screw dislocation in body-centered cubic (BCC) metals has a complex non-planar atomic core structure. The configuration of this core controls their motion and is affected not only by the usual resolved shear stress on the dislocation, but also by non-driving s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of plasticity 2011-10, Vol.27 (10), p.1471-1484
Hauptverfasser: Wang, Z.Q., Beyerlein, I.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomistic simulations have shown that a screw dislocation in body-centered cubic (BCC) metals has a complex non-planar atomic core structure. The configuration of this core controls their motion and is affected not only by the usual resolved shear stress on the dislocation, but also by non-driving stress components. Consequences of the latter are referred to as non-Schmid effects. These atomic and micro-scale effects are the reason slip characteristics in deforming single and polycrystalline BCC metals are extremely sensitive to the direction and sense of the applied load. In this paper, we develop a three-dimensional discrete dislocation dynamics (DD) simulation model to understand the relationship between individual dislocation glide behavior and macro-scale plastic slip behavior in single crystal BCC Ta. For the first time, it is shown that non-Schmid effects on screw dislocations of both {110} and {112} slip systems must be implemented into the DD models in order to predict the strong plastic anisotropy and tension–compression asymmetry experimentally observed in the stress–strain curves of single crystal Ta. Incorporation of fundamental atomistic information is critical for developing a physics-based, predictive meso-scale DD simulation tool that can connect length/time scales and investigate the underlying mechanisms governing the deformation of BCC metals.
ISSN:0749-6419
1879-2154
DOI:10.1016/j.ijplas.2010.08.011