Position control of linear switched reluctance motors for high-precision applications
Most advanced manufacturing processes require precise motions for material transfer, packaging, assembly, and electrical wiring. To achieve precise linear motions, most of these high-performance manufacturing machines use X-Y sliding tables with permanent-magnet rotary motors and rotary to linear co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2003-09, Vol.39 (5), p.1350-1362 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most advanced manufacturing processes require precise motions for material transfer, packaging, assembly, and electrical wiring. To achieve precise linear motions, most of these high-performance manufacturing machines use X-Y sliding tables with permanent-magnet rotary motors and rotary to linear couplers. Though this method is the most widely used, it has disadvantages of low accuracy, complex mechanical adjustments, high cost, and low reliability. This paper describes the position control of a linear switched reluctance motor for high-performance motions in manufacturing automation. The proposed actuator has a very simple structure and it can be manufactured easily. There is no need for magnets and no limitation on the travel distance. The actuator is extremely robust and can be used in a hostile environment. A novel current-force-position lookup table is first developed to perform the force linearization. Then, a plug-in robust compensator using H/sub /spl infin// loop-shaping design is employed to improve the system robustness and the tracking performance. Experimental results of the motion system indicate that the system has fast tracking responses with good accuracy. |
---|---|
ISSN: | 0093-9994 1939-9367 |
DOI: | 10.1109/TIA.2003.816502 |