The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p

A ternary relational structure X is an ordered pair (V,E) where V is a set and E a set of ordered 3-tuples whose coordinates are chosen from V (so a ternary relational structure is a natural generalization of a 3-uniform hypergraph). A ternary relational structure is called a Cayley ternary relation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2010-11, Vol.310 (21), p.2895-2909
1. Verfasser: DOBSON, Edward
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2909
container_issue 21
container_start_page 2895
container_title Discrete mathematics
container_volume 310
creator DOBSON, Edward
description A ternary relational structure X is an ordered pair (V,E) where V is a set and E a set of ordered 3-tuples whose coordinates are chosen from V (so a ternary relational structure is a natural generalization of a 3-uniform hypergraph). A ternary relational structure is called a Cayley ternary relational structure of a group G if [inline image], the automorphism group of X, contains the left regular representation of G. We prove that two Cayley ternary relational structures of [inline image], p>=11 a prime, are isomorphic if and only if they are isomorphic by a group automorphism of [inline image]. This result then implies that any two Cayley digraphs of [inline image] are isomorphic if and only if they are isomorphic by a group automorphism of [inline image], p>=11 a prime.
doi_str_mv 10.1016/j.disc.2010.06.032
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671271571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671271571</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-cb5b8e49bb512226f62e4cea553b3102f6c545c955ff40ff33dfe9c1b5e4a14b3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK7-AU-5CF5aM0mTtkdZ_IIFLyvsrSTpxO2SNjVpD_vvLbqnYYbnHXheQu6B5cBAPR3ztks252w5MJUzwS_ICqqSZ6qC_SVZMQY8E0rur8lNSke27EpUK9LuDki7FPoQx0OXejrGYDz21IVIN_rk8UQnjIOOJxrR66kLg_Y0TXG20xwx_YFLHqk26Ds90O8Y5jHR4GiILUZajbfkymmf8O481-Tr9WW3ec-2n28fm-dtNnKopswaaSosamMkcM6VUxwLi1pKYQQw7pSVhbS1lM4VzDkhWoe1BSOx0FAYsSaP_38XiZ8Z09T0SyvovR4wzKkBVQIvQZawoA9nVCervYt6sF1qxtj1i2rDBQdeFUL8Agavab8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671271571</pqid></control><display><type>article</type><title>The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>DOBSON, Edward</creator><creatorcontrib>DOBSON, Edward</creatorcontrib><description>A ternary relational structure X is an ordered pair (V,E) where V is a set and E a set of ordered 3-tuples whose coordinates are chosen from V (so a ternary relational structure is a natural generalization of a 3-uniform hypergraph). A ternary relational structure is called a Cayley ternary relational structure of a group G if [inline image], the automorphism group of X, contains the left regular representation of G. We prove that two Cayley ternary relational structures of [inline image], p&gt;=11 a prime, are isomorphic if and only if they are isomorphic by a group automorphism of [inline image]. This result then implies that any two Cayley digraphs of [inline image] are isomorphic if and only if they are isomorphic by a group automorphism of [inline image], p&gt;=11 a prime.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2010.06.032</identifier><identifier>CODEN: DSMHA4</identifier><language>eng</language><publisher>Kidlington: Elsevier</publisher><subject>Algebra ; Automorphisms ; Combinatorics ; Combinatorics. Ordered structures ; Exact sciences and technology ; Graph theory ; Group theory ; Group theory and generalizations ; Isomorphism ; Mathematical analysis ; Mathematics ; Order, lattices, ordered algebraic structures ; Representations ; Sciences and techniques of general use</subject><ispartof>Discrete mathematics, 2010-11, Vol.310 (21), p.2895-2909</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23212843$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DOBSON, Edward</creatorcontrib><title>The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p</title><title>Discrete mathematics</title><description>A ternary relational structure X is an ordered pair (V,E) where V is a set and E a set of ordered 3-tuples whose coordinates are chosen from V (so a ternary relational structure is a natural generalization of a 3-uniform hypergraph). A ternary relational structure is called a Cayley ternary relational structure of a group G if [inline image], the automorphism group of X, contains the left regular representation of G. We prove that two Cayley ternary relational structures of [inline image], p&gt;=11 a prime, are isomorphic if and only if they are isomorphic by a group automorphism of [inline image]. This result then implies that any two Cayley digraphs of [inline image] are isomorphic if and only if they are isomorphic by a group automorphism of [inline image], p&gt;=11 a prime.</description><subject>Algebra</subject><subject>Automorphisms</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Group theory</subject><subject>Group theory and generalizations</subject><subject>Isomorphism</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Order, lattices, ordered algebraic structures</subject><subject>Representations</subject><subject>Sciences and techniques of general use</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMouK7-AU-5CF5aM0mTtkdZ_IIFLyvsrSTpxO2SNjVpD_vvLbqnYYbnHXheQu6B5cBAPR3ztks252w5MJUzwS_ICqqSZ6qC_SVZMQY8E0rur8lNSke27EpUK9LuDki7FPoQx0OXejrGYDz21IVIN_rk8UQnjIOOJxrR66kLg_Y0TXG20xwx_YFLHqk26Ds90O8Y5jHR4GiILUZajbfkymmf8O481-Tr9WW3ec-2n28fm-dtNnKopswaaSosamMkcM6VUxwLi1pKYQQw7pSVhbS1lM4VzDkhWoe1BSOx0FAYsSaP_38XiZ8Z09T0SyvovR4wzKkBVQIvQZawoA9nVCervYt6sF1qxtj1i2rDBQdeFUL8Agavab8</recordid><startdate>20101106</startdate><enddate>20101106</enddate><creator>DOBSON, Edward</creator><general>Elsevier</general><scope>IQODW</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101106</creationdate><title>The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p</title><author>DOBSON, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-cb5b8e49bb512226f62e4cea553b3102f6c545c955ff40ff33dfe9c1b5e4a14b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Automorphisms</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Group theory</topic><topic>Group theory and generalizations</topic><topic>Isomorphism</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Order, lattices, ordered algebraic structures</topic><topic>Representations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DOBSON, Edward</creatorcontrib><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DOBSON, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p</atitle><jtitle>Discrete mathematics</jtitle><date>2010-11-06</date><risdate>2010</risdate><volume>310</volume><issue>21</issue><spage>2895</spage><epage>2909</epage><pages>2895-2909</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><coden>DSMHA4</coden><abstract>A ternary relational structure X is an ordered pair (V,E) where V is a set and E a set of ordered 3-tuples whose coordinates are chosen from V (so a ternary relational structure is a natural generalization of a 3-uniform hypergraph). A ternary relational structure is called a Cayley ternary relational structure of a group G if [inline image], the automorphism group of X, contains the left regular representation of G. We prove that two Cayley ternary relational structures of [inline image], p&gt;=11 a prime, are isomorphic if and only if they are isomorphic by a group automorphism of [inline image]. This result then implies that any two Cayley digraphs of [inline image] are isomorphic if and only if they are isomorphic by a group automorphism of [inline image], p&gt;=11 a prime.</abstract><cop>Kidlington</cop><pub>Elsevier</pub><doi>10.1016/j.disc.2010.06.032</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2010-11, Vol.310 (21), p.2895-2909
issn 0012-365X
1872-681X
language eng
recordid cdi_proquest_miscellaneous_1671271571
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Algebra
Automorphisms
Combinatorics
Combinatorics. Ordered structures
Exact sciences and technology
Graph theory
Group theory
Group theory and generalizations
Isomorphism
Mathematical analysis
Mathematics
Order, lattices, ordered algebraic structures
Representations
Sciences and techniques of general use
title The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20isomorphism%20problem%20for%20Cayley%20ternary%20relational%20structures%20for%20some%20abelian%20groups%20of%20order%208p&rft.jtitle=Discrete%20mathematics&rft.au=DOBSON,%20Edward&rft.date=2010-11-06&rft.volume=310&rft.issue=21&rft.spage=2895&rft.epage=2909&rft.pages=2895-2909&rft.issn=0012-365X&rft.eissn=1872-681X&rft.coden=DSMHA4&rft_id=info:doi/10.1016/j.disc.2010.06.032&rft_dat=%3Cproquest_pasca%3E1671271571%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671271571&rft_id=info:pmid/&rfr_iscdi=true