The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p
A ternary relational structure X is an ordered pair (V,E) where V is a set and E a set of ordered 3-tuples whose coordinates are chosen from V (so a ternary relational structure is a natural generalization of a 3-uniform hypergraph). A ternary relational structure is called a Cayley ternary relation...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2010-11, Vol.310 (21), p.2895-2909 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2909 |
---|---|
container_issue | 21 |
container_start_page | 2895 |
container_title | Discrete mathematics |
container_volume | 310 |
creator | DOBSON, Edward |
description | A ternary relational structure X is an ordered pair (V,E) where V is a set and E a set of ordered 3-tuples whose coordinates are chosen from V (so a ternary relational structure is a natural generalization of a 3-uniform hypergraph). A ternary relational structure is called a Cayley ternary relational structure of a group G if [inline image], the automorphism group of X, contains the left regular representation of G. We prove that two Cayley ternary relational structures of [inline image], p>=11 a prime, are isomorphic if and only if they are isomorphic by a group automorphism of [inline image]. This result then implies that any two Cayley digraphs of [inline image] are isomorphic if and only if they are isomorphic by a group automorphism of [inline image], p>=11 a prime. |
doi_str_mv | 10.1016/j.disc.2010.06.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671271571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671271571</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-cb5b8e49bb512226f62e4cea553b3102f6c545c955ff40ff33dfe9c1b5e4a14b3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK7-AU-5CF5aM0mTtkdZ_IIFLyvsrSTpxO2SNjVpD_vvLbqnYYbnHXheQu6B5cBAPR3ztks252w5MJUzwS_ICqqSZ6qC_SVZMQY8E0rur8lNSke27EpUK9LuDki7FPoQx0OXejrGYDz21IVIN_rk8UQnjIOOJxrR66kLg_Y0TXG20xwx_YFLHqk26Ds90O8Y5jHR4GiILUZajbfkymmf8O481-Tr9WW3ec-2n28fm-dtNnKopswaaSosamMkcM6VUxwLi1pKYQQw7pSVhbS1lM4VzDkhWoe1BSOx0FAYsSaP_38XiZ8Z09T0SyvovR4wzKkBVQIvQZawoA9nVCervYt6sF1qxtj1i2rDBQdeFUL8Agavab8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671271571</pqid></control><display><type>article</type><title>The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>DOBSON, Edward</creator><creatorcontrib>DOBSON, Edward</creatorcontrib><description>A ternary relational structure X is an ordered pair (V,E) where V is a set and E a set of ordered 3-tuples whose coordinates are chosen from V (so a ternary relational structure is a natural generalization of a 3-uniform hypergraph). A ternary relational structure is called a Cayley ternary relational structure of a group G if [inline image], the automorphism group of X, contains the left regular representation of G. We prove that two Cayley ternary relational structures of [inline image], p>=11 a prime, are isomorphic if and only if they are isomorphic by a group automorphism of [inline image]. This result then implies that any two Cayley digraphs of [inline image] are isomorphic if and only if they are isomorphic by a group automorphism of [inline image], p>=11 a prime.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2010.06.032</identifier><identifier>CODEN: DSMHA4</identifier><language>eng</language><publisher>Kidlington: Elsevier</publisher><subject>Algebra ; Automorphisms ; Combinatorics ; Combinatorics. Ordered structures ; Exact sciences and technology ; Graph theory ; Group theory ; Group theory and generalizations ; Isomorphism ; Mathematical analysis ; Mathematics ; Order, lattices, ordered algebraic structures ; Representations ; Sciences and techniques of general use</subject><ispartof>Discrete mathematics, 2010-11, Vol.310 (21), p.2895-2909</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23212843$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DOBSON, Edward</creatorcontrib><title>The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p</title><title>Discrete mathematics</title><description>A ternary relational structure X is an ordered pair (V,E) where V is a set and E a set of ordered 3-tuples whose coordinates are chosen from V (so a ternary relational structure is a natural generalization of a 3-uniform hypergraph). A ternary relational structure is called a Cayley ternary relational structure of a group G if [inline image], the automorphism group of X, contains the left regular representation of G. We prove that two Cayley ternary relational structures of [inline image], p>=11 a prime, are isomorphic if and only if they are isomorphic by a group automorphism of [inline image]. This result then implies that any two Cayley digraphs of [inline image] are isomorphic if and only if they are isomorphic by a group automorphism of [inline image], p>=11 a prime.</description><subject>Algebra</subject><subject>Automorphisms</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Group theory</subject><subject>Group theory and generalizations</subject><subject>Isomorphism</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Order, lattices, ordered algebraic structures</subject><subject>Representations</subject><subject>Sciences and techniques of general use</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMouK7-AU-5CF5aM0mTtkdZ_IIFLyvsrSTpxO2SNjVpD_vvLbqnYYbnHXheQu6B5cBAPR3ztks252w5MJUzwS_ICqqSZ6qC_SVZMQY8E0rur8lNSke27EpUK9LuDki7FPoQx0OXejrGYDz21IVIN_rk8UQnjIOOJxrR66kLg_Y0TXG20xwx_YFLHqk26Ds90O8Y5jHR4GiILUZajbfkymmf8O481-Tr9WW3ec-2n28fm-dtNnKopswaaSosamMkcM6VUxwLi1pKYQQw7pSVhbS1lM4VzDkhWoe1BSOx0FAYsSaP_38XiZ8Z09T0SyvovR4wzKkBVQIvQZawoA9nVCervYt6sF1qxtj1i2rDBQdeFUL8Agavab8</recordid><startdate>20101106</startdate><enddate>20101106</enddate><creator>DOBSON, Edward</creator><general>Elsevier</general><scope>IQODW</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101106</creationdate><title>The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p</title><author>DOBSON, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-cb5b8e49bb512226f62e4cea553b3102f6c545c955ff40ff33dfe9c1b5e4a14b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Automorphisms</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Group theory</topic><topic>Group theory and generalizations</topic><topic>Isomorphism</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Order, lattices, ordered algebraic structures</topic><topic>Representations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DOBSON, Edward</creatorcontrib><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DOBSON, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p</atitle><jtitle>Discrete mathematics</jtitle><date>2010-11-06</date><risdate>2010</risdate><volume>310</volume><issue>21</issue><spage>2895</spage><epage>2909</epage><pages>2895-2909</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><coden>DSMHA4</coden><abstract>A ternary relational structure X is an ordered pair (V,E) where V is a set and E a set of ordered 3-tuples whose coordinates are chosen from V (so a ternary relational structure is a natural generalization of a 3-uniform hypergraph). A ternary relational structure is called a Cayley ternary relational structure of a group G if [inline image], the automorphism group of X, contains the left regular representation of G. We prove that two Cayley ternary relational structures of [inline image], p>=11 a prime, are isomorphic if and only if they are isomorphic by a group automorphism of [inline image]. This result then implies that any two Cayley digraphs of [inline image] are isomorphic if and only if they are isomorphic by a group automorphism of [inline image], p>=11 a prime.</abstract><cop>Kidlington</cop><pub>Elsevier</pub><doi>10.1016/j.disc.2010.06.032</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-365X |
ispartof | Discrete mathematics, 2010-11, Vol.310 (21), p.2895-2909 |
issn | 0012-365X 1872-681X |
language | eng |
recordid | cdi_proquest_miscellaneous_1671271571 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Algebra Automorphisms Combinatorics Combinatorics. Ordered structures Exact sciences and technology Graph theory Group theory Group theory and generalizations Isomorphism Mathematical analysis Mathematics Order, lattices, ordered algebraic structures Representations Sciences and techniques of general use |
title | The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20isomorphism%20problem%20for%20Cayley%20ternary%20relational%20structures%20for%20some%20abelian%20groups%20of%20order%208p&rft.jtitle=Discrete%20mathematics&rft.au=DOBSON,%20Edward&rft.date=2010-11-06&rft.volume=310&rft.issue=21&rft.spage=2895&rft.epage=2909&rft.pages=2895-2909&rft.issn=0012-365X&rft.eissn=1872-681X&rft.coden=DSMHA4&rft_id=info:doi/10.1016/j.disc.2010.06.032&rft_dat=%3Cproquest_pasca%3E1671271571%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671271571&rft_id=info:pmid/&rfr_iscdi=true |