The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p

A ternary relational structure X is an ordered pair (V,E) where V is a set and E a set of ordered 3-tuples whose coordinates are chosen from V (so a ternary relational structure is a natural generalization of a 3-uniform hypergraph). A ternary relational structure is called a Cayley ternary relation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2010-11, Vol.310 (21), p.2895-2909
1. Verfasser: DOBSON, Edward
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A ternary relational structure X is an ordered pair (V,E) where V is a set and E a set of ordered 3-tuples whose coordinates are chosen from V (so a ternary relational structure is a natural generalization of a 3-uniform hypergraph). A ternary relational structure is called a Cayley ternary relational structure of a group G if [inline image], the automorphism group of X, contains the left regular representation of G. We prove that two Cayley ternary relational structures of [inline image], p>=11 a prime, are isomorphic if and only if they are isomorphic by a group automorphism of [inline image]. This result then implies that any two Cayley digraphs of [inline image] are isomorphic if and only if they are isomorphic by a group automorphism of [inline image], p>=11 a prime.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2010.06.032