Hydroxyapatite Nanopowder Synthesis with a Programmed Resorption Rate
A microwave, solvothermal synthesis of hydroxyapatite (HAp) nanopowder with a programmed material resorption rate was developed. The aqueous reaction solution was heated by a microwave radiation field with high energy density. The measurements included powder X-ray diffraction (PXRD) and the density...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2012-01, Vol.2012 (2012), p.1-9 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A microwave, solvothermal synthesis of hydroxyapatite (HAp) nanopowder with a programmed material resorption rate was developed. The aqueous reaction solution was heated by a microwave radiation field with high energy density. The measurements included powder X-ray diffraction (PXRD) and the density, specific surface area (SSA), and chemical composition as specified by the inductively coupled plasma optical emission spectrometry technique (ICP-OES). The morphology and structure were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A degradation test in accordance with norm ISO 10993-4 was conducted. The developed method enables control of the average grain size and chemical composition of the obtained HAp nanoparticles by regulating the microwave radiation time. As a consequence, it allows programming of the material degradation rate and makes possible an adjustment of the material activity in a human body to meet individual resorption rate needs. The authors synthesized a pure, fully crystalline hexagonal hydroxyapatite nanopowder with a specific surface area from 60 to almost 240 m2/g, a Ca/P molar ratio in the range of 1.57–1.67, and an average grain size from 6 nm to over 30 nm. A 28-day degradation test indicated that the material solubility ranged from 4 to 20 mg/dm3. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2012/841971 |