Skew partial fields, multilinear representations of matroids, and a matrix tree theorem

We extend the notion of representation of a matroid to algebraic structures that we call skew partial fields. Our definition of such representations extends Tutteʼs definition, using chain groups. We show how such representations behave under duality and minors, we extend Tutteʼs representability cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied mathematics 2013-01, Vol.50 (1), p.201-227
Hauptverfasser: Pendavingh, R.A., van Zwam, S.H.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the notion of representation of a matroid to algebraic structures that we call skew partial fields. Our definition of such representations extends Tutteʼs definition, using chain groups. We show how such representations behave under duality and minors, we extend Tutteʼs representability criterion to this new class, and we study the generator matrices of the chain groups. An example shows that the class of matroids representable over a skew partial field properly contains the class of matroids representable over a skew field. Next, we show that every multilinear representation of a matroid can be seen as a representation over a skew partial field. Finally we study a class of matroids called quaternionic unimodular. We prove a generalization of the matrix tree theorem for this class.
ISSN:0196-8858
1090-2074
DOI:10.1016/j.aam.2011.08.003