Magnetotransport in a graphene monolayer with two tunable magnetic barriers
The magnetotransport property for a monolayer graphene with two turnable magnetic barriers has been investigated by the transfer-matrix method. We show that the parameters of barrier height, width, and interval between two barriers affect the electron wave decaying length, which determine the conduc...
Gespeichert in:
Veröffentlicht in: | Physica. B, Condensed matter Condensed matter, 2011-12, Vol.406 (23), p.4407-4411 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The magnetotransport property for a monolayer graphene with two turnable magnetic barriers has been investigated by the transfer-matrix method. We show that the parameters of barrier height, width, and interval between two barriers affect the electron wave decaying length, which determine the conductance with parallel or antiparallel magnetization configuration, and consequently the tunneling magnetoresistance (TMR) for the system. Interestingly, a graphene attached by two barriers with different heights can produce a resonant TMR peak at low energy region one order of magnitude larger than that for the system with two same height barriers because that the asymmetry of magnetic barriers block the electron transmission in the case of antiparallel magnetization configuration. The results obtained here may be useful in understanding of electron tunneling in graphene and in designing of graphene-based nanodevices. |
---|---|
ISSN: | 0921-4526 1873-2135 |
DOI: | 10.1016/j.physb.2011.08.100 |