New generalization of the two-dimensional Bernfeld–Haddock conjecture and its proof

In this paper, we investigate a class of systems of delay differential equations. These systems have important practical applications and also are a two-dimensional generalization of the Bernfeld–Haddock conjecture. It is shown that each bounded solution of the systems tends to a constant vector und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2010-10, Vol.11 (5), p.3413-3420
Hauptverfasser: Xu, Min, Chen, Wei, Yi, Xuejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate a class of systems of delay differential equations. These systems have important practical applications and also are a two-dimensional generalization of the Bernfeld–Haddock conjecture. It is shown that each bounded solution of the systems tends to a constant vector under a desirable condition. Our results improve some corresponding ones already known and, in particular, give a proof of the Bernfeld–Haddock conjecture.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2009.12.001