On convergence of a new secant-like method for solving nonlinear equations
In this paper, we prove that the order of a new secant-like method presented recently with the so-called order of 2.618 is only 2.414. Some mistakes in the derivation leading to such a conclusion are pointed out. Meanwhile, under the assumption that the second derivative of the involved function is...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2010-09, Vol.217 (2), p.583-589 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove that the order of a new secant-like method presented recently with the so-called order of 2.618 is only 2.414. Some mistakes in the derivation leading to such a conclusion are pointed out. Meanwhile, under the assumption that the second derivative of the involved function is bounded, the convergence radius of the secant-like method is given, and error estimates matching its convergence order are also provided by using a generalized Fibonacci sequence. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2010.05.092 |