High-sensitivity detection of narrowband light in a more intense broadband background using coherence interferogram phase

This paper describes an optical interferometric detection technique, known as the interferogram phase step shift, which detects narrowband, coherent, and partially coherent light in more intense broadband incoherent background light using changes in the phase gradient with the optical path differenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2006-10, Vol.24 (10), p.3654-3662
Hauptverfasser: Coutinho, R.C., Selviah, D.R., Griffiths, H.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes an optical interferometric detection technique, known as the interferogram phase step shift, which detects narrowband, coherent, and partially coherent light in more intense broadband incoherent background light using changes in the phase gradient with the optical path difference of the coherence interferogram to distinguish the bandwidth or coherence of the signal from that of the background. The detection sensitivity is assessed experimentally by measuring the smallest signal-to-background ratio or signal-to-clutter ratio (SCR), which causes a detectable change in the self-coherence interferogram phase. This minimum detectable SCR (MDSCR) is measured for the multimode He-Ne laser, resonant-cavity light-emitting diode (LED), narrowband-filtered white light, and LED signal sources in a more intense tungsten-halogen-lamp white-light background. The highest MDSCRs to date, to the authors' knowledge, are -46.42 dB for coherent light and -31.96 dB for partially coherent light, which exceed those of existing automatic single-domain techniques by 18.97 and 4.51 dB with system input dynamic ranges of 19.24 and 11.39 dB, respectively. The sensitivity dependence on the signal-to-system bandwidth ratio and on the relative offset of their central wavelengths is also assessed, and optimum values are identified
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2006.881851