Carbazole/fluorene copolymers with dimesitylboron pendants for blue light-emitting diodes
A series of random and alternating carbazole/fluorene copolymers with various dimesitylboron-containing carbazole derivative contents were synthesized by Suzuki polymerization for use as a light-emitting layer in blue light-emitting diodes. Two carbazole derivatives, CzPhB and CzPhThB consisted of a...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2011-02, Vol.52 (4), p.976-986 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of random and alternating carbazole/fluorene copolymers with various dimesitylboron-containing carbazole derivative contents were synthesized by Suzuki polymerization for use as a light-emitting layer in blue light-emitting diodes. Two carbazole derivatives, CzPhB and CzPhThB consisted of a carbazoyl group as the donor and a dimesitylboron group as the acceptor group, separated by phenyl and phenyl-thiophene groups π-conjugated systems, respectively. The copolymers exhibited good thermal stability and blue emission in both solution and the solid state. Moreover, the CzPhB/fluorene and CzPhThB/fluorene copolymers exhibited a higher PL quantum efficiency than the fluorene-based homopolymer (POF). Higher brightness and larger current efficiency were observed for the CzPhB/fluorene and CzPhThB/fluorene copolymer-based devices compared to the POF-based device. Additionally, the CzPhThB/fluorene copolymer-based devices had better EL performances than the CzPhB/fluorene copolymer-based devices. The turn-on voltage, maximal brightness, and highest luminescence efficiency of the carbazole/fluorene copolymer-based devices were found to be 4.5–8.5 V, 436 cd/m2, and 0.51 cd/A, respectively.
[Display omitted] |
---|---|
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/j.polymer.2010.12.060 |