Enhanced electrochemical stability of PtRuAu/C catalyst synthesized by radiolytic process
A nanoparticle catalyst of PtRuAu/C was synthesized by including an Au precursor in the radiolytic process for preparing a PtRu/C catalyst. Their methanol oxidation activity and electrochemical durability were measured by linear sweep voltammetry before and after potential cycling treatment. PtRuAu/...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2012-04, Vol.27 (7), p.1037-1045 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A nanoparticle catalyst of PtRuAu/C was synthesized by including an Au precursor in the radiolytic process for preparing a PtRu/C catalyst. Their methanol oxidation activity and electrochemical durability were measured by linear sweep voltammetry before and after potential cycling treatment. PtRuAu/C had a significantly higher durability than PtRu/C while maintaining a comparable high activity. The morphology and substructure of the nanoparticles were investigated by energy-dispersive x-ray spectroscopy, x-ray diffraction, and x-ray absorption fine structure spectroscopy. Metallic nanoparticles with diameters of about 2 nm were obtained; they probably had Pt-core/PtRu-shell structures. Transmission electron microscopy observations after potential cycling revealed that 2-nm-diameter nanoparticles containing Au did not coarsen, whereas nanoparticles without Au coarsened significantly to 3.7 nm. Some crystal defaults were observed in the coarsened particles, implying that the coarsening was caused by Ostwald ripening. The Au addition to catalyst particles consisting of PtRu inhibits coarsening and consequently improves the electrochemical durability. |
---|---|
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/jmr.2012.65 |