Classical solution of a one-dimensional parabolic boundary value problem with nonlinear boundary conditions and moving boundary

We consider a nonlinear parabolic boundary value problem of the Stefan type with one space variable, which generalizes the model of hydride formation under constant conditions. We suggest a grid method for constructing approximations to the unknown boundary and to the concentration distribution. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2010-07, Vol.46 (7), p.1053-1062
1. Verfasser: Chernov, I. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a nonlinear parabolic boundary value problem of the Stefan type with one space variable, which generalizes the model of hydride formation under constant conditions. We suggest a grid method for constructing approximations to the unknown boundary and to the concentration distribution. We prove the uniform convergence of the interpolation approximations to a classical solution of the boundary value problem. (The boundary is smooth, and the concentration distribution has the necessary derivatives.) Thus, we prove the theorem on the existence of a solution, and the proof is given in constructive form: the suggested convergent grid method can be used for numerical experiments.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266110070128