Classical solution of a one-dimensional parabolic boundary value problem with nonlinear boundary conditions and moving boundary
We consider a nonlinear parabolic boundary value problem of the Stefan type with one space variable, which generalizes the model of hydride formation under constant conditions. We suggest a grid method for constructing approximations to the unknown boundary and to the concentration distribution. We...
Gespeichert in:
Veröffentlicht in: | Differential equations 2010-07, Vol.46 (7), p.1053-1062 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a nonlinear parabolic boundary value problem of the Stefan type with one space variable, which generalizes the model of hydride formation under constant conditions. We suggest a grid method for constructing approximations to the unknown boundary and to the concentration distribution. We prove the uniform convergence of the interpolation approximations to a classical solution of the boundary value problem. (The boundary is smooth, and the concentration distribution has the necessary derivatives.) Thus, we prove the theorem on the existence of a solution, and the proof is given in constructive form: the suggested convergent grid method can be used for numerical experiments. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266110070128 |