An Information-Based Approach to Sensor Management in Large Dynamic Networks

This paper addresses the problem of sensor management for a large network of agile sensors. Sensor management, as defined here, is the process of dynamically retasking agile sensors in response to an evolving environment. Sensors may be agile in a variety of ways, e.g., the ability to reposition, po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2007-05, Vol.95 (5), p.978-999
Hauptverfasser: Kreucher, Christopher M., Hero, Alfred O., Kastella, Keith D., Morelande, Mark R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the problem of sensor management for a large network of agile sensors. Sensor management, as defined here, is the process of dynamically retasking agile sensors in response to an evolving environment. Sensors may be agile in a variety of ways, e.g., the ability to reposition, point an antenna, choose sensing mode, or waveform. The goal of sensor management in a large network is to choose actions for individual sensors dynamically so as to maximize overall network utility. Sensor management in the multiplatform setting is a challenging problem for several reasons. First, the state space required to characterize an environment is typically of very high dimension and poorly represented by a parametric form. Second, the network must simultaneously address a number of competing goals. Third, the number of potential taskings grows exponentially with the number of sensors. Finally, in low-communication environments, decentralized methods are required. The approach we present in this paper addresses these challenges through a novel combination of particle filtering for nonparametric density estimation, information theory for comparing actions, and physicomimetics for computational tractability. The efficacy of the method is illustrated in a realistic surveillance application by simulation, where an unknown number of ground targets are detected and tracked by a network of mobile sensors.
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2007.893247