Lower bounds on the independence number of certain graphs of odd girth at least seven

Heckman and Thomas [C.C. Heckman, R. Thomas, A new proof of the independence ratio of triangle-free cubic graphs, Discrete Math. 233 (2001) 233–237] proved that every connected subcubic triangle-free graph G has an independent set of order at least ( 4 n ( G ) − m ( G ) − 1 ) / 7 where n ( G ) and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2011, Vol.159 (2), p.143-151
Hauptverfasser: Pedersen, Anders Sune, Rautenbach, Dieter, Regen, Friedrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 2
container_start_page 143
container_title Discrete Applied Mathematics
container_volume 159
creator Pedersen, Anders Sune
Rautenbach, Dieter
Regen, Friedrich
description Heckman and Thomas [C.C. Heckman, R. Thomas, A new proof of the independence ratio of triangle-free cubic graphs, Discrete Math. 233 (2001) 233–237] proved that every connected subcubic triangle-free graph G has an independent set of order at least ( 4 n ( G ) − m ( G ) − 1 ) / 7 where n ( G ) and m ( G ) denote the order and size of G , respectively. We conjecture that every connected subcubic graph G of odd girth at least seven has an independent set of order at least ( 5 n ( G ) − m ( G ) − 1 ) / 9 and verify our conjecture under some additional technical assumptions.
doi_str_mv 10.1016/j.dam.2010.10.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671246126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X10003537</els_id><sourcerecordid>1671246126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-ed11d25dc77335ee9d12cfefab93a3faf55f2c5125613f802c967f437ae4ec5e3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQQIMoWKs_wFsugpetmaS7afEk4hcUvCh4C2kysSnbpCa7iv_erC0evcwww5sZ5hFyDmwCDJqr9cTqzYSz33rCAA7ICGaSV42UcEhGhWkqDrO3Y3KS85oxBqUakddF_MJEl7EPNtMYaLdC6oPFLZYQDNLQb5aFiI4aTJ32gb4nvV3loROtpe8-dSuqO9qizh3N-InhlBw53WY82-cxeb2_e7l9rBbPD0-3N4vKTJnoKrQAltfWSClEjTi3wI1Dp5dzoYXTrq4dNzXwugHhZoybeSPdVEiNUzQ1ijG53O3dpvjRY-7UxmeDbasDxj4raCTwaQO8KSjsUJNizgmd2ia_0elbAVODQrVWRaEaFA6torDMXOzX62x065IOxue_QS5mIIUcuOsdh-XXT49JZeMHedYnNJ2y0f9z5QeGBIaG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671246126</pqid></control><display><type>article</type><title>Lower bounds on the independence number of certain graphs of odd girth at least seven</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pedersen, Anders Sune ; Rautenbach, Dieter ; Regen, Friedrich</creator><creatorcontrib>Pedersen, Anders Sune ; Rautenbach, Dieter ; Regen, Friedrich</creatorcontrib><description>Heckman and Thomas [C.C. Heckman, R. Thomas, A new proof of the independence ratio of triangle-free cubic graphs, Discrete Math. 233 (2001) 233–237] proved that every connected subcubic triangle-free graph G has an independent set of order at least ( 4 n ( G ) − m ( G ) − 1 ) / 7 where n ( G ) and m ( G ) denote the order and size of G , respectively. We conjecture that every connected subcubic graph G of odd girth at least seven has an independent set of order at least ( 5 n ( G ) − m ( G ) − 1 ) / 9 and verify our conjecture under some additional technical assumptions.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2010.10.011</identifier><identifier>CODEN: DAMADU</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; Graphs ; Independence ; Information retrieval. Graph ; Lower bounds ; Mathematical analysis ; Mathematics ; Odd girth ; Order, lattices, ordered algebraic structures ; Proving ; Sciences and techniques of general use ; Stability ; Theoretical computing</subject><ispartof>Discrete Applied Mathematics, 2011, Vol.159 (2), p.143-151</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-ed11d25dc77335ee9d12cfefab93a3faf55f2c5125613f802c967f437ae4ec5e3</citedby><cites>FETCH-LOGICAL-c403t-ed11d25dc77335ee9d12cfefab93a3faf55f2c5125613f802c967f437ae4ec5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X10003537$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23817371$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedersen, Anders Sune</creatorcontrib><creatorcontrib>Rautenbach, Dieter</creatorcontrib><creatorcontrib>Regen, Friedrich</creatorcontrib><title>Lower bounds on the independence number of certain graphs of odd girth at least seven</title><title>Discrete Applied Mathematics</title><description>Heckman and Thomas [C.C. Heckman, R. Thomas, A new proof of the independence ratio of triangle-free cubic graphs, Discrete Math. 233 (2001) 233–237] proved that every connected subcubic triangle-free graph G has an independent set of order at least ( 4 n ( G ) − m ( G ) − 1 ) / 7 where n ( G ) and m ( G ) denote the order and size of G , respectively. We conjecture that every connected subcubic graph G of odd girth at least seven has an independent set of order at least ( 5 n ( G ) − m ( G ) − 1 ) / 9 and verify our conjecture under some additional technical assumptions.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graphs</subject><subject>Independence</subject><subject>Information retrieval. Graph</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Odd girth</subject><subject>Order, lattices, ordered algebraic structures</subject><subject>Proving</subject><subject>Sciences and techniques of general use</subject><subject>Stability</subject><subject>Theoretical computing</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQQIMoWKs_wFsugpetmaS7afEk4hcUvCh4C2kysSnbpCa7iv_erC0evcwww5sZ5hFyDmwCDJqr9cTqzYSz33rCAA7ICGaSV42UcEhGhWkqDrO3Y3KS85oxBqUakddF_MJEl7EPNtMYaLdC6oPFLZYQDNLQb5aFiI4aTJ32gb4nvV3loROtpe8-dSuqO9qizh3N-InhlBw53WY82-cxeb2_e7l9rBbPD0-3N4vKTJnoKrQAltfWSClEjTi3wI1Dp5dzoYXTrq4dNzXwugHhZoybeSPdVEiNUzQ1ijG53O3dpvjRY-7UxmeDbasDxj4raCTwaQO8KSjsUJNizgmd2ia_0elbAVODQrVWRaEaFA6torDMXOzX62x065IOxue_QS5mIIUcuOsdh-XXT49JZeMHedYnNJ2y0f9z5QeGBIaG</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Pedersen, Anders Sune</creator><creator>Rautenbach, Dieter</creator><creator>Regen, Friedrich</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>Lower bounds on the independence number of certain graphs of odd girth at least seven</title><author>Pedersen, Anders Sune ; Rautenbach, Dieter ; Regen, Friedrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-ed11d25dc77335ee9d12cfefab93a3faf55f2c5125613f802c967f437ae4ec5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graphs</topic><topic>Independence</topic><topic>Information retrieval. Graph</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Odd girth</topic><topic>Order, lattices, ordered algebraic structures</topic><topic>Proving</topic><topic>Sciences and techniques of general use</topic><topic>Stability</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedersen, Anders Sune</creatorcontrib><creatorcontrib>Rautenbach, Dieter</creatorcontrib><creatorcontrib>Regen, Friedrich</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedersen, Anders Sune</au><au>Rautenbach, Dieter</au><au>Regen, Friedrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bounds on the independence number of certain graphs of odd girth at least seven</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2011</date><risdate>2011</risdate><volume>159</volume><issue>2</issue><spage>143</spage><epage>151</epage><pages>143-151</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><coden>DAMADU</coden><abstract>Heckman and Thomas [C.C. Heckman, R. Thomas, A new proof of the independence ratio of triangle-free cubic graphs, Discrete Math. 233 (2001) 233–237] proved that every connected subcubic triangle-free graph G has an independent set of order at least ( 4 n ( G ) − m ( G ) − 1 ) / 7 where n ( G ) and m ( G ) denote the order and size of G , respectively. We conjecture that every connected subcubic graph G of odd girth at least seven has an independent set of order at least ( 5 n ( G ) − m ( G ) − 1 ) / 9 and verify our conjecture under some additional technical assumptions.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2010.10.011</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2011, Vol.159 (2), p.143-151
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_miscellaneous_1671246126
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Combinatorics
Combinatorics. Ordered structures
Computer science
control theory
systems
Exact sciences and technology
Graphs
Independence
Information retrieval. Graph
Lower bounds
Mathematical analysis
Mathematics
Odd girth
Order, lattices, ordered algebraic structures
Proving
Sciences and techniques of general use
Stability
Theoretical computing
title Lower bounds on the independence number of certain graphs of odd girth at least seven
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bounds%20on%20the%20independence%20number%20of%20certain%20graphs%20of%20odd%20girth%20at%20least%20seven&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Pedersen,%20Anders%20Sune&rft.date=2011&rft.volume=159&rft.issue=2&rft.spage=143&rft.epage=151&rft.pages=143-151&rft.issn=0166-218X&rft.eissn=1872-6771&rft.coden=DAMADU&rft_id=info:doi/10.1016/j.dam.2010.10.011&rft_dat=%3Cproquest_cross%3E1671246126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671246126&rft_id=info:pmid/&rft_els_id=S0166218X10003537&rfr_iscdi=true