Lower bounds on the independence number of certain graphs of odd girth at least seven
Heckman and Thomas [C.C. Heckman, R. Thomas, A new proof of the independence ratio of triangle-free cubic graphs, Discrete Math. 233 (2001) 233–237] proved that every connected subcubic triangle-free graph G has an independent set of order at least ( 4 n ( G ) − m ( G ) − 1 ) / 7 where n ( G ) and m...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2011, Vol.159 (2), p.143-151 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heckman and Thomas [C.C. Heckman, R. Thomas, A new proof of the independence ratio of triangle-free cubic graphs, Discrete Math. 233 (2001) 233–237] proved that every connected subcubic triangle-free graph
G
has an independent set of order at least
(
4
n
(
G
)
−
m
(
G
)
−
1
)
/
7
where
n
(
G
)
and
m
(
G
)
denote the order and size of
G
, respectively. We conjecture that every connected subcubic graph
G
of odd girth at least seven has an independent set of order at least
(
5
n
(
G
)
−
m
(
G
)
−
1
)
/
9
and verify our conjecture under some additional technical assumptions. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2010.10.011 |