Construction of k-Lipschitz Triangular Norms and Conorms From Empirical Data

This paper examines the practical construction of k -Lipschitz triangular norms and conorms from empirical data. We apply a characterization of such functions based on k -convex additive generators and translate k -convexity of piecewise linear strictly decreasing functions into a simple set of line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2009-10, Vol.17 (5), p.1217-1220
Hauptverfasser: Beliakov, G., Calvo, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines the practical construction of k -Lipschitz triangular norms and conorms from empirical data. We apply a characterization of such functions based on k -convex additive generators and translate k -convexity of piecewise linear strictly decreasing functions into a simple set of linear inequalities on their coefficients. This is the basis of a simple linear spline-fitting algorithm, which guarantees k -Lipschitz property of the resulting triangular norms and conorms.
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2009.2024412