Construction of k-Lipschitz Triangular Norms and Conorms From Empirical Data
This paper examines the practical construction of k -Lipschitz triangular norms and conorms from empirical data. We apply a characterization of such functions based on k -convex additive generators and translate k -convexity of piecewise linear strictly decreasing functions into a simple set of line...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 2009-10, Vol.17 (5), p.1217-1220 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper examines the practical construction of k -Lipschitz triangular norms and conorms from empirical data. We apply a characterization of such functions based on k -convex additive generators and translate k -convexity of piecewise linear strictly decreasing functions into a simple set of linear inequalities on their coefficients. This is the basis of a simple linear spline-fitting algorithm, which guarantees k -Lipschitz property of the resulting triangular norms and conorms. |
---|---|
ISSN: | 1063-6706 1941-0034 |
DOI: | 10.1109/TFUZZ.2009.2024412 |