Improved Output Power of 380 nm InGaN-Based LEDs Using a Heavily Mg-Doped GaN Insertion Layer Technique
High-performance InGaN-based 380 nm UV LEDs are fabricated by using a heavily Mg-doped GaN insertion layer (HD-IL) technique. Based on the transmission electron microscopy, etch pit density, and cathodoluminescence results, the HD-IL technique can substantially reduce the defect density of GaN layer...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2009-07, Vol.15 (4), p.1132-1136 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-performance InGaN-based 380 nm UV LEDs are fabricated by using a heavily Mg-doped GaN insertion layer (HD-IL) technique. Based on the transmission electron microscopy, etch pit density, and cathodoluminescence results, the HD-IL technique can substantially reduce the defect density of GaN layer. The double-crystal X-ray diffraction results are in good agreement with those observations. The internal quantum efficiency of LED sample with an HD-IL shows around 40% improvement compared with the LED sample without the use of HD-IL. When the vertical-type LED chips (size: 1 mm times 1 mm) are driven by a 350 mA current, the output powers of the LEDs with and without an HD-IL are measured to be 203.4 and 158.9 mW, respectively. As much as 28% increased light output power is achieved. |
---|---|
ISSN: | 1077-260X 1558-4542 |
DOI: | 10.1109/JSTQE.2009.2014778 |